Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.
Recent studies employing genome-wide approaches have provided an unprecedented view of the scope of L1 activities on structural variations in the human genome, and further reinforced the role of L1s as one of the major driving forces behind human genome evolution. The rapid identification of novel L1 elements by these high-throughput approaches demands improved L1 functional assays. However, the existing assays use antibiotic selection markers or fluorescent proteins as reporters; neither is amenable to miniaturization. To increase assay sensitivity and throughput, we have developed a third generation assay by using dual-luciferase reporters, in which firefly luciferase is used as the retrotransposition indicator and Renilla luciferase is encoded on the same or separate plasmid for normalization. This novel assay is highly sensitive and has a broad dynamic range. Quantitative data with high signal-to-noise ratios can be obtained from 24- up to 96-well plates in 2–4 days after transfection. Using the dual-luciferase assays, we have characterized profiles of retrotransposition by various human and mouse L1 elements, and detailed the kinetics of L1 retrotransposition in cultured cells. Its high-throughput and short assay timeframe make it well suited for routine tests as well as large-scale screening efforts.
The PIWI-interacting RNA (piRNA) pathway is essential for retrotransposon silencing. In piRNA-deficient mice, L1-overexpressing male germ cells exhibit excessive DNA damage and meiotic defects. It remains unknown whether L1 expression simply highlights piRNA deficiency or actually drives the germ-cell demise. Specifically, the sheer abundance of genomic L1 copies prevents reliable quantification of new insertions. Here, we developed a codon-optimized L1 transgene that is controlled by an endogenous mouse L1 promoter. Importantly, DNA methylation dynamics of a single-copy transgene were indistinguishable from those of endogenous L1s. Analysis of Mov10l1 −/− testes established that de novo methylation of the L1 transgene required the intact piRNA pathway. Consistent with loss of DNA methylation and programmed reduction of H3K9me2 at meiotic onset, the transgene showed 1,400-fold increase in RNA expression and consequently 70-fold increase in retrotransposition in postnatal day 14 Mov10l1 −/− germ cells compared with the wildtype. Analysis of adult Mov10l1 −/− germ-cell fractions indicated a stage-specific increase of retrotransposition in the early meiotic prophase. However, extrapolation of the transgene data to endogenous L1s suggests that it is unlikely insertional mutagenesis alone accounts for the Mov10l1 −/− phenotype. Indeed, pharmacological inhibition of reverse transcription did not rescue the meiotic defect. Cumulatively, these results establish the occurrence of productive L1 mobilization in the absence of an intact piRNA pathway but leave open the possibility of processes preceding L1 integration in triggering meiotic checkpoints and germ-cell death. Additionally, our data suggest that many heritable L1 insertions originate from individuals with partially compromised piRNA defense.LINE-1 reporter transgene | meiotic arrest | PIWI-interacting RNA | retrotransposition | spermatogenesis T he bulk of mammalian genomes are made up of transposable elements, the majority of which are retrotransposons (1). Retrotransposons are classified into long-interspersed elements (LINEs), short-interspersed elements (SINEs), and LTR retrotransposons, which collectively account for 43% and 37% of the human and mouse genomes, respectively (2). Retrotransposons amplify in the genome through an RNA intermediate, a process termed retrotransposition. LINEs are autonomous elements. An intact, full-length LINE-1 (L1) encodes two ORFs (i.e., ORF1 and ORF2); both are required for L1 mobilization (3). SINEs are nonautonomous elements and rely on L1's proteins for propagation in the genome (4). LTR retrotransposons are autonomous but appear to be inactivated in the human genome (5). Retrotransposition endangers the integrity of both somatic and germline genomes through insertional mutagenesis. In somatic tissues, both elevated L1 expression and retrotransposition have been strongly associated with many types of human cancers (6, 7). In a few cases, specific retrotransposition events (i.e., insertions) have been determined to drive t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.