Uniaxial tension tests were conducted on thin commercially pure (CP) titanium sheets subjected to electrically assisted deformation using a new experimental setup to decouple thermal–mechanical and possible electroplastic behavior. The observed absence of stress reductions for specimens air-cooled to near room temperature motivated the need to reevaluate the role of temperature on modeling the plastic behavior of metals subjected to electrically assisted deformation, an item that is often overlooked when invoking electroplasticity theory. As a result, two empirical constitutive models, a modified-Hollomon and the Johnson–Cook models of plastic flow stress, were used to predict the magnitude of stress reductions caused by the application of constant dc current and the associated Joule heating temperature increase during electrically assisted tension experiments. Results show that the thermal–mechanical coupled models can effectively predict the mechanical behavior of commercially pure titanium in electrically assisted tension and compression experiments.
The flow of electric current through a metal during deformation has been observed to reduce its flow stress and increase its ductility. This observation has motivated the development of advanced "electrically-assisted" metal forming processes that utilize electric current to assist in the forming of high-strength and difficult-to-form materials, such as titanium and magnesium alloys. This method of heating provides attractive benefits such as rapid heating times, increased energy efficiency due to its localized nature, as well as the ability to heat the workpiece in the forming machine thus eliminating the transfer process ben\'een oven heating and forming. In this paper, a generalized method is proposed to relate applied electric current density to thermally activated mechanical behavior to better understand and Improve the processing of metals during electrically-assisted deformation. A comparison is made of engineering metals studied experimentally as well as in the literature, and it is shown that the method provides insight into what some researchers have observed as the occurrence or absence of a "current density threshold" in certain materials. A new material parameter, "current density sensitivity," is introduced in order to provide a metric for the relative influence of current density on a material's thermally activated plastic flow stress. As a result, the electric current necessary to induce thermal softening in a material can be estimated in order to effectively parameterize a wide range of advanced electrically-assisted forming processes. Thermally induced changes in material microstructure are observed and discussed with respect to the underlying deformation mechanisms present during electrically-assisted deformation. Finally, a strong correlation between thermally activated mechanical behavior and elastic springback elimination during sheet bending is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.