The c-di-GMP network of Borrelia burgdorferi, a causative agent of Lyme disease, consists of Rrp1, a diguanylate cyclase/response regulator; Hpk1, a histidine kinase; PdeA and PdeB, c-di-GMP phosphodiesterases; and PlzA, a PilZ domain c-di-GMP receptor. Borrelia hermsii, a causative agent of tick-borne relapsing fever, possesses a putative c-di-GMP regulatory network that is uncharacterized. While B. burgdorferi requires c-di-GMP to survive within ticks, the associated effector mechanisms are poorly defined. Using site-directed mutagenesis, size exclusion chromatography, isothermal titration calorimetry and fluorescence resonance energy transfer, we investigate the interaction of c-di-GMP with the Borrelia PilZ domain-containing Plz proteins: B. burgdorferi PlzA and B. hermsii PlzC. The Plz proteins were determined to be monomeric in their apo and holo forms and to bind c-di-GMP with high affinity with a 1:1 stoichiometry. C-di-GMP binding induced structural rearrangements in PlzA and PlzC. C-di-GMP binding proved to be dependent on positive charge at R of the PilZ domain motif, RxxxR. Comparative sequence analyses led to the identification of Borrelia consensus sequences for the PilZ domain signature motifs. This study provides insight into c-di-GMP:Plz receptor interaction and identifies a possible switch mechanism that may regulate Plz protein effector functions.
Ovarian cancer is the most lethal gynecological cancer. Here we show that innate immune agonist, dsRNA, directly induces ovarian cancer cell death and identify biomarkers associated with responsiveness to this targeted treatment. Nuclear staining and MTT assays following dsRNA stimulation revealed two subpopulations, sensitive (OVCAR-3, CAOV-3; patient samples malignant 1 and 2) and resistant (DOV-13, SKOV-3). Microarray analysis identified 75 genes with differential expression that further delineated these two subpopulations. qPCR and immunoblot analyses showed increased dsRNA receptor expression after stimulation as compared to resistant and immortalized ovarian surface epithelial cells (e.g., 70-fold with malignant 2, 43-fold with OVCAR-3). Using agonists, antagonists, and shRNA-mediated knockdown of dsRNA receptors, we show that TLR3, RIG-I, and mda5 coordinated a caspase 8/9- and interferon-dependent cell death. In resistant cells, dsRNA receptor overexpression restored dsRNA sensitivity. When dsRNA was combined with carboplatin or paclitaxel, cell viability significantly decreased over individual treatments (1.5- to 7.5-fold). Isobologram analyses showed synergism in dsRNA combinations (CI=0.4-0.82) vs. an additive effect in carboplatin/paclitaxel treatment (CI=1.5-2). Our data identify a predictive marker, dsRNA receptor expression, to target dsRNA responsive populations and show that, in dsRNA-sensitive cells, dsRNA induces apoptosis and enhances the potency of cytotoxic chemotherapeutics.
Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.
Background: Suppressor of IB kinase ⑀ (SIKE) inhibits a key innate immune effector molecule, TANK-binding kinase 1 (TBK1), through an undefined mechanism. Results: SIKE is a TBK1 substrate. Conclusion: SIKE controls TBK1 activity by acting as a high affinity substrate. Significance: SIKE attenuates phosphorylation of interferon regulatory factor 3 (IRF3) by serving as an alternative, high affinity substrate for TBK1.
The NFKB transcription factor family members RelA, p50, and cRel form homo and heterodimers that are inhibited by IKBα, IKBβ, and IKBε. These NFKB family members have diverse biological functions and their expression profiles differ leading to different concentrations in different tissue types. Here we present definitive biophysical measurements of the NFKB dimer affinities and inhibitor affinities to better understand dimer exchange and how the presence of inhibitors may alter the equilibrium concentrations of NFKB dimers in the cellular context. Fluorescence anisotropy binding experiments were performed at low concentrations to mimic intracellular concentrations. We report much stronger binding affinities than had been previously reported by non-equilibrium gel-shift and analytical ultracentrifugation assays. The results reveal a wide range of NFKB dimer affinities and a strong preference of each IKB for a small subset of NFKB dimers. Once the preferred IKB is bound, dimer exchange no longer occurs over a period of days. A mathematical model of the cellular distribution of these canonical NFKB transcription factors based on the revised binding affinities recapitulates intracellular observations and provides simple, precise explanations for observed cellular phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.