Grapevine cultivation is increasing worldwide as people realize the benefits of grape and wine consumption. To improve yield and enhance the quality of grapes, biotechnology research plays an ever-increasing role. In recent years, the sequencing of multiple grape genomes has led to increased vibrant research initiatives on grape improvement. These novel approaches include those related to the application of transgenic technology toward the improvement of grape varieties. These advancements include the development of molecular markers for valuable traits, improved plant transformation systems, genetic engineering to enhance disease tolerance in grape cultivars, and the identification of flavor and aroma components to improve the enological quality of grapes. Some of the results obtained by various researchers have direct application, whereas others are yet to gain direct application in grape quality improvement, although such techniques possess potential qualities, which can be exploited for genetic breeding of Vitis species. This chapter highlights selected advancements in grape biotechnology from recently reported research activities.
The skin color of grape berry is very important in the wine industry. The red color results from the synthesis and accumulation of anthocyanins, which is regulated by transcription factors belonging to the MYB family. The transcription factors that activate the anthocyanin biosynthetic genes have been isolated in model plants. However, the genetic basis of color variation is species-specific and its understanding is relevant in many crop species. This study reports the isolation of MybA1, and MYBCS-1 genes from muscadine grapes for the first time. They are designated as VrMybA1 (GenBank Accession No. KJ513437), and VrMYBCS1 (VrMYB5a) (GenBank Accession No. KJ513438). The findings in this study indicate that, the deduced VrMybA1 and VrMYBCS1 protein structures share extensive sequence similarity with previously characterized plant MYBs, while phylogenetic analysis confirms that they are members of the plant MYB super-family. The expressions of MybA1, and MYBCS1 (VrMYB5a) gene sequences were investigated by quantitative real-time PCR using in vitro cell cultures, and berry skin samples at different developmental stages. Results showed that MybA1, and MYBCS1 genes were up-regulated in the veràison and physiologically mature red berry skins during fruit development, as well as in in vitro red cell cultures. This study also found that in ripening berries, the transcription of VrMybA1, and VrMYBCS1 in the berry skin was positively correlated with anthocyanin accumulation. Therefore, the upregulation of VrMybA1, and VrMYBCS1 results in the accumulation and regulation of anthocyanin biosynthesis in berry development of muscadine grapes. This work greatly enhances the understanding of anthocyanin biosynthesis in muscadine grapes and will facilitate future genetic modification of the antioxidants in V. rotundifolia.
Stilbenoids such as t-piceid, t-resveratrol, ε-viniferins, and t-pterostilbene can differ significantly among grape cultivars and years due to variation in environmental conditions and subsequent stressors encountered during a year. This study evaluated diverse muscadine grape cultivars for their ability to consistently produce four major stilbenoids such as t-piceid, t-resveratrol, ε-viniferins, and t-pterostilbene irrespective of environmental changes that can impact their production. Berries from forty-two muscadine grape cultivars were collected for three years (2013, 2014, and 2015) to measure stilbenoids. Results showed significant differences in the composition of four stilbenoids among the muscadine cultivars. The highest level of stilbenoids was observed in ‘Fry Seedless’ (270.20 µg/g fresh weight) in each of the three consecutive years tested followed by ‘Pride’ (46.18 µg/g fresh weight) while ‘Doreen’ produced the lowest level of stilbenoids (1.73 µg/g fresh weight). Results demonstrated that certain muscadine grape cultivars consistently produced varied levels of the four major stilbenoids year after year. Based on the total content of stilbenoids, the 42 muscadine cultivars studied were grouped into three categories such as High, Medium and Low stilbenoid-containing cultivars. This information will help establish new vineyards with cultivars that are less prone to variations in environmental conditions and can consistently produce stilbenoid-rich muscadine grape berries with enhanced market value to promote consumer health.
Grapes (Vitis spp.) are consumed as fresh table fruits, raisins, and processed into wine, juice, jelly and other value-added products. Grapes contain bioactive secondary metabolites (polyphenols), such as proanthocyanins (oliogemeric lavonoids), lavonoids (catechin, epicatechin, and quercetin), and anthocyanins. They have non-lavonoids such as hydroxycinnamic acids (p-coumaric, cinnamic, cafeic, gentisic, ferulic, and vanillic acids), and hydroxybenzoic acids: trihydroxy stilbenes (resveratrol and polydatin). These phytochemicals are of economic importance to pharmaceutical, food and cosmetic industries. Nutraceuticals from grape seeds have potential cardioprotective, anti-cancer, antioxidant, anti-inlammatory, antiviral, neuroprotective, hepatoprotective and antimicrobial properties. Grape seed nutraceuticals have been re-invented in the past few years as a new paradigm in human medicine. In particular, nutraceuticals from grape seeds have been used in stopping wound bleeding, anti-inlammatory agents, pain relief, and anti-diarrhea. In addition, they can be used for the treatment of various human health conditions such as cancer, cholera, smallpox, and nausea as well as eye infections, skin, kidney, liver diseases, etc. Nowadays, consumers are demanding for healthy supplements and personal care products with natural ingredients. Therefore, the present review highlights recent developments and future opportunities of grape seed nutraceuticals for the prevention of human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.