The purpose of this study was to measure the in vivo brain distribution of antihistamines and assess the influence of in vitro permeability, P-glycoprotein (Pgp) efflux, and plasma protein binding. Six antihistamines (acrivastine, chlorpheniramine, diphenhydramine doxylamine, fexofenadine, terfenadine) were selected based on previously reported in vitro permeability and Pgp efflux properties and dosed intravenously to steady-state plasma concentrations of 2–10 µmol/l in rats. Plasma and brain concentrations were measured by LC/MS/MS, and protein binding determined by ultrafiltration. Doxylamine, diphenhydramine and chlorpheniramine had brain-to-plasma concentration ratios of 4.34 ± 1.26, 18.4 ± 2.35 and 34.0 ± 9.02, respectively. These drugs had high passive membrane permeability (>310 nm/s), moderate protein binding (71–84%) and were not Pgp substrates; features that yield high CNS penetration. In contrast, acrivastine and fexofenadine had low brain-to-plasma ratios of 0.072 ± 0.014 and 0.018 + 0.002, consistent with low passive membrane permeability for both compounds (16.2 and 66 nm/s, respectively) and Pgp efflux. Finally, terfenadine had a brain-to-plasma ratio of 2.21 ± 1.00 even though it underwent Pgp-mediated efflux (in vitro ratio = 2.88). Terfenadine’s high passive permeability (285 nm/s) overcame the Pgp-mediated efflux to yield brain-to-plasma ratio >1. The brain-to-unbound plasma ratio was 22-fold higher suggesting that protein binding (96.3% bound) limited terfenadine’s brain distribution. In conclusion, passive membrane permeability, Pgp-mediated efflux and/or high plasma protein binding influence the in vivo brain distribution of antihistamine drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.