Serine/arginine-rich splicing factors (SR proteins) are substrates for serine phosphorylation that can regulate SR protein function. We have observed gross changes in SR protein phosphorylation during early development coincident with major zygotic gene activation in the nematode Ascaris lumbricoides. These differences correlate with large-scale changes in SR protein activity in promoting both trans-and cis-splicing. Importantly, inactive early stage extracts can be made splicing competent on addition of later stage SR proteins. These data suggest that changes in SR protein phosphorylation have a role in the activation of pre-mRNA splicing during early development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.