Leatherback turtles in the Northwest Atlantic Ocean have a broad geographic range that extends from nesting beaches near the equator to seasonal foraging grounds as far north as Canada. The ability of leatherbacks to maintain core body temperature (T b ) higher than that of the surrounding water is thought to be a key element of their biology that permits them to exploit productive waters at high latitudes. We provide the first recordings of T b from freely swimming leatherbacks at a northern foraging ground, and use these data to assess the importance of behavioral adjustments and metabolic sources of heat for maintenance of the thermal gradient (T g ). The mean T b for individual leatherbacks ranged from 25.4±1.7 to 27.3±0.3°C, and T g ranged from 10.7±2.4 to 12.1±1.7°C. Variation in mean T b was best explained by the amount of time that turtles spent in the relatively warm surface waters. A diel trend in T b was apparent, with daytime cooling suggestive of prey ingestion and night-time warming attributable to endogenous heat production. We estimate that metabolic rates necessary to support the observed T g are ~3 times higher than resting metabolic rate, and that specific dynamic action is an important source of heat for foraging leatherbacks.
SUMMARYIt is generally assumed that leatherback turtles (Dermochelys coriacea), like other species of sea turtle, do not feed while offshore from nesting beaches, and rely instead on fat reserves to fuel reproductive activities. Recent studies, however, provide evidence that leatherbacks may forage during the internesting interval while offshore in the Western Atlantic Ocean and Caribbean Sea. Bio-logging technology was used to investigate the foraging behavior of female leatherback turtles at St Croix, US Virgin Islands. Leatherback gastrointestinal tract temperatures (T GT ) were analyzed for sudden fluctuations indicative of ingestions, and laboratory ingestion simulations were used to characterize temperature fluctuations associated with ingestion of prey versus seawater. Dive patterns associated with prey ingestion were characterized and the proportion of prey ingestion during the day (05:00-18:59h) and night (19:00-04:59h) were compared. A combined total of 111 prey ingestions for seven leatherback turtles were documented during the internesting interval. The number of prey ingestions ranged from six to 48 for individual turtles, and the majority (87.4%) of these events occurred during the daytime. Prey ingestions were most frequently associated with V-shaped dives, and the mean (±1s.d.) maximum dive depth with prey ingestion ranged from 154±51 to 232±101m for individual turtles. Although leatherbacks were found to opportunistically feed during the internesting interval, the low prey ingestion rates indicate that energy reserves acquired prior to the breeding season are critical for successful reproduction by leatherbacks from the St Croix, USVI nesting population.
Optimal foraging models predict that large predators should concentrate on large prey in order to maximize their net gain of energy intake. Here, we show that the largest species of sea turtle, Dermochelys coriacea, does not strictly adhere to this general pattern. Field observations combined with a theoretical model suggest that a 300 kg leatherback turtle would meet its energetic requirements by feeding for 3-4 h a day on 4 g jellyfish, but only if prey were aggregated in high-density patches. Therefore, prey abundance rather than prey size may, in some cases, be the overriding parameter for foraging leatherbacks. This is a classic example where the presence of small prey in the diet of a large marine predator may reflect profitable foraging decisions if the relatively low energy intake per small individual prey is offset by high encounter rates and minimal capture and handling costs. This study provides, to our knowledge, the first quantitative estimates of intake rate for this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.