Proteins secreted by activated platelets can adhere to the vessel wall and promote the development of atherosclerosis and thrombosis. Despite this biologic significance, however, the complement of proteins comprising the platelet releasate is largely unknown. Using a proteomics approach, we have identified more than 300 proteins released by human platelets following thrombin activation. Many of the proteins identified were not previously attributed to platelets, including secretogranin III, a potential monocyte chemoattractant precursor; cyclophilin A, a vascular smooth muscle cell growth factor; calumenin, an inhibitor of the vitamin K epoxide reductase-warfarin interaction, as well as proteins of unknown function that map to expressed sequence tags. Secretogranin III, cyclophilin A, and calumenin were confirmed to localize in platelets and to be released upon activation. Furthermore, while absent in normal vasculature, they were identified in human atherosclerotic lesions. Therefore, these and other proteins released from platelets may contribute to atherosclerosis and to the thrombosis that complicates the disease. Moreover, as soluble extracellular proteins, they may prove suitable as novel therapeutic targets.
Proteomic technologies, such as yeast twohybrid, mass spectrometry (MS), protein/peptide arrays and fluorescence microscopy, yield multi-dimensional data sets, which are often quite large and either not published or published as supplementary information that is not easily searchable. Without a system in place for standardizing and sharing data, it is not fruitful for the biomedical community to contribute these types of data to centralized repositories. Even more difficult is the annotation and display of pertinent information in the context of the corresponding proteins. Wikipedia, an online encyclopedia that anyone can edit, has already proven quite successful1 and can be used as a model for sharing biological data. However, the need for experimental evidence, data standardization and ownership of data creates scientific obstacles. Here, we describe Human Proteinpedia (http://www.humanproteinpedia.org/) as a portal that overcomes many of these obstacles to provide an integrated view of the human proteome. Human Proteinpedia also allows users to contribute and edit proteomic data with two significant differences from Wikipedia: first, the contributor is expected to provide experimental evidence for the data annotated; and second, only the original contributor can edit their data. Human Proteinpedia's annotation system provides investigators with multiple options for contributing data including web forms and annotation servers. Although registration is required to contribute data, anyone can freely access the data in the repository. The web forms simplify submission through the use of pull-down menus for certain data fields and pop-up menus for standardized vocabulary terms. Distributed annotation servers using modified protein DAS (distributed annotation system) protocols developed by us (DAS protocols were originally developed for sharing mRNA and DNA data) permit contributing laboratories to maintain protein annotations locally. All protein annotations are visualized in the context of corresponding proteins in the Human Protein Reference Database (HPRD)3. Figure 1 shows tissue expression data for alpha-2-HS glycoprotein derived from three different types of experiments. Our unique effort differs significantly from existing repositories, such as PeptideAtlas and PRIDE5 in several respects. First, most proteomic repositories are restricted to one or two experimental platforms, whereas Human Proteinpedia can accommodate data from diverse platforms, including yeast two-hybrid screens, MS, peptide/protein arrays, immunohistochemistry, western blots, coimmunoprecipitation and fluorescence microscopy-type experiments. Second, Human Proteinpedia allows contributing laboratories to annotate data pertaining to six features of proteins (posttranslational modifications, tissue expression, cell line expression, subcellular localization, enzyme substrates and protein-protein interactions;). No existing repository currently permits annotation of all these features in proteins. Third, all data submitted to Human Proteinpedia...
Platelets, while anucleate, contain RNA, some of which is translated into protein upon activation. Hypothesising that the platelet proteome is reflected in the transcriptome, we identified 82 proteins secreted from activated platelets and compared these, as well as published proteomic data, to the transcriptional profile. We also compared the transcriptome of platelets to other tissues to identify platelet-specific genes and used ontology to determine gene categories over-represented in platelets. RNA was isolated from highly pure platelet preparations for hybridization to Affymetrix oligonucleotide arrays. We identified 2,928 distinct messages as being present in platelets. The platelet transcriptome was compared with the proteome by relating both to UniGene clusters. Platelet proteomic data correlated well with the transcriptome, with 69% of secreted proteins detectable at the mRNA level, and similar concordance was obtained using two published datasets. While many of the most abundant mRNAs are for known platelet proteins, messages were detected for proteins not previously reported in platelets. Some of these may represent residual megakaryocyte messages; however, proteomic analysis confirmed the expression of many previously unreported genes in platelets. Transcripts for well-described platelet proteins are among the most platelet-specific messages. Ontological categories related to signal transduction, receptors, ion channels, and membranes are over-represented in platelets, while categories involved in protein synthesis are depleted. Despite the absence of gene transcription, the platelet proteome is mirrored in the transcriptome. Conversely, transcriptional analysis predicts the presence of novel proteins in the platelet. Transcriptional analysis is relevant to platelet biology, providing insights into platelet function and the mechanisms of platelet disorders.
The neutrophil-dominated inflammation of the lung in cystic fibrosis (CF) has traditionally been seen as a physiological response to continuous opportunistic infection. Recent studies suggest, however, that regulation of the inflammatory response itself may be altered in CF. Neutrophil migration from the bloodstream involves alterations in surface expression of the adhesion molecules L-selectin and Mac-1 (CD11b/CD18). The aim of this study was to assess neutrophil adhesion molecule expression and responsiveness in CF. Neutrophils from chronic (n = 16) and acutely infected (n = 13) CF patients and 15 normal control subjects were directly assessed by Fluorescence-activated cell sorter (FACS) analysis for surface expression of L-selectin and CD11b before and after stimulation with interleukin 8 (IL-8) or f-Met-Leu-Phe (fMLP). Neutrophils from stable (n = 5) and acutely infected (n = 5) non-CF bronchiectasis patients were also assessed. Surface upregulation of CD11b was similar in all groups. Basal levels of L-selectin were also comparable among all groups, however, when stimulated, neutrophils from both stable and acutely infected CF patients shed significantly less L-selectin than those from control subjects (p < 0.05 and p < 0.01, respectively). This decreased responsiveness was not observed in either stable or acutely infected non-CF bronchiectasis patients. These results add to the accumulating evidence suggestive of a defective inflammatory response in CF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.