This paper evaluates the Raw microprocessor. Raw addresses the challenge of building a general-purpose architecture that performs well on a larger class of stream and embedded computing applications than existing microprocessors, while still running existing ILP-based sequential programs with reasonable performance in the face of increasing wire delays. Raw approaches this challenge by implementing plenty of on-chip resources -including logic, wires, and pins -in a tiled arrangement, and exposing them through a new ISA, so that the software can take advantage of these resources for parallel applications. Raw supports both ILP and streams by routing operands between architecturally-exposed functional units over a point-to-point scalar operand network. This network offers low latency for scalar data transport. Raw manages the effect of wire delays by exposing the interconnect and using software to orchestrate both scalar and stream data transport.We have implemented a prototype Raw microprocessor in IBM's 180 nm, 6-layer copper, CMOS 7SF standard-cell ASIC process. We have also implemented ILP and stream compilers. Our evaluation attempts to determine the extent to which Raw succeeds in meeting its goal of serving as a more versatile, general-purpose processor. Central to achieving this goal is Raw's ability to exploit all forms of parallelism, including ILP, DLP, TLP, and Stream parallelism. Specifically, we evaluate the performance of Raw on a diverse set of codes including traditional sequential programs, streaming applications, server workloads and bit-level embedded computation. Our experimental methodology makes use of a cycle-accurate simulator validated against our real hardware. Compared to a 180 nm Pentium-III, using commodity PC memory system components, Raw performs within a factor of 2x for sequential applications with a very low degree of ILP, about 2x to 9x better for higher levels of ILP, and 10x-100x better when highly parallel applications are coded in a stream language or optimized by hand. The paper also proposes a new versatility metric and uses it to discuss the generality of Raw.Clearly, the ALU area is not a significant constraint on the execution width of a modern-day wide-issue microprocessor. On the other hand, the presence of many physical execution units is a minimum prerequisite to the exploitation of the same massive parallelism that ASICs are able to exploit.3. Management of Wires and Wire Delay: ASIC designers can place and wire communicating operations in ways that minimize wire delay, minimize latency, and maximize bandwidth. In contrast, it is now well known that the delay of the interconnect inside traditional microprocessors limits scalability [36,1,15,38,45]. Itanium II's 6-way integer execution unit presents evidence for this -it spends over half of its critical path in the bypass paths of the ALUs. ASIC designers manage wire delay inherent in large distributed arrays of function units in multiple steps. First, they place close together operations that need to communicate fre...
Abstract-Given the current trends in multicore scaling, chips with 1000 cores may exist within the next 5 to 10 years. However, their promise of increased performance will only be reached if their inherent scaling and programming challenges are overcome. Meanwhile, recent advances in nanophotonic device manufacturing are making CMOSintegrated optics a reality-interconnect technology which can provide more bandwidth at lower power than conventional electronics. Perhaps more importantly, optical interconnect also has the potential to enable new, easy-to-use programming models enabled by its inexpensive broadcast mechanism. This paper introduces ATAC, a new manycore architecture that capitalizes on the recent advances in optics to address a number of challenges that future manycore designs will face. The new constraints and opportunities of on-chip optical interconnect are presented and explored in the design of ATAC. Furthermore, this paper discusses ATAC's programming models, and introduces Consumer Tagging, a novel programming model that leverages ATAC's strengths to provide high performance and scalability.
Based on current trends, multicore processors will have 1000 cores or more within the next decade. However, their promise of increased performance will only be realized if their inherent scaling and programming challenges are overcome. Fortunately, recent advances in nanophotonic device manufacturing are making CMOS-integrated optics a reality-interconnect technology which can provide significantly more bandwidth at lower power than conventional electrical signaling. Optical interconnect has the potential to enable massive scaling and preserve familiar programming models in future multicore chips. This paper presents ATAC, a new multicore architecture with integrated optics, and ACKwise, a novel cache coherence protocol designed to leverage ATAC's strengths. ATAC uses nanophotonic technology to implement a fast, efficient global broadcast network which helps address a number of the challenges that future multicores will face. ACKwise is a new directory-based cache coherence protocol that uses this broadcast mechanism to provide high performance and scalability. Based on 64-core and 1024-core simulations with Splash2, Parsec, and synthetic benchmarks, we show that ATAC with ACKwise out-performs a chip with conventional interconnect and cache coherence protocols. On 1024-core evaluations, ACKwise protocol on ATAC outperforms the best conventional cache coherence protocol on an electrical mesh network by 2.5x with Splash2 benchmarks and by 61% with synthetic benchmarks.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.