The objective of this study was to produce linear and nonlinear viscoelastic models of eight major ligaments in the human ankle/foot complex for use in computer models of the lower extremity. The ligaments included in this study were the anterior talofibular (ATaF), anterior tibiofibular (ATiF), anterior tibiotalar (ATT), calcaneofibular (CF), posterior talofibular (PTaF), posterior tibiofibular (PTiF), posterior tibiotalar (PTT), and tibiocalcaneal (TiC) ligaments. Step relaxation and ramp tests were performed. Back-extrapolation was used to correct for vibration effects and the error introduced by the finite rise time in step relaxation tests. Ligament behavior was found to be nonlinear viscoelastic, but could be adequately modeled up to 15 percent strain using Fung's quasilinear viscoelastic (QLV) model. Failure properties and the effects of preconditioning were also examined.
For several years, Virginia Tech and other schools have measured the frequency and severity of head impacts sustained by collegiate American football players in real time using the Head Impact Telemetry (HIT) System of helmet-mounted accelerometers. In this study, data from 37,128 head impacts collected at Virginia Tech during games from 2006 to 2010 were analyzed. Peak head acceleration exceeded 100 g in 516 impacts, and the Head Injury Criterion (HIC) exceeded 200 in 468 impacts. Four instrumented players in the dataset sustained a concussion. These data were used to develop risk curves for concussion as a function of peak head acceleration and HIC. The validity of this biomechanical approach was assessed using epidemiological data on concussion incidence from other sources. Two specific aspects of concussion incidence were addressed: the variation by player position, and the frequency of repeat concussions. The HIT System data indicated that linemen sustained the highest overall number of head impacts, while skill positions sustained a higher number of more severe head impacts (peak acceleration > 100 g or HIC > 200). When weighted using injury risk curves, the HIT System data predicted a higher incidence of concussion in skill positions compared to linemen at rates that were in strong agreement with the epidemiological literature (Pearson's r = 0.72-0.87). The predicted rates of repeat concussions (21-39% over one season and 33-50% over five seasons) were somewhat higher than the ranges reported in the epidemiological literature. These analyses demonstrate that simple biomechanical parameters that can be measured by the HIT System possess a high level of power for predicting concussion.
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibial pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. The objectives of this study were to investigate the effect of Achilles tension on fracture mode and to empirically model the axial loading tolerance of the foot/ankle complex. Blunt axial impact tests were performed on forty-three (43) isolated lower extremities with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups. However, fracture initiated at the distal tibia more frequently with the addition of Achilles tension (p < 0.05). Acoustic sensors mounted to the bone demonstrated that fracture initiated at the time of peak local axial force. A survival analysis was performed on the injury data set using a Weibull regression model with specimen age, gender, body mass, and peak Achilles tension as predictor variables (R2 = 0.90). A closed-form survivor function was developed to predict the risk of fracture to the foot/ankle complex in terms of axial tibial force. The axial tibial force associated with a 50% risk of injury ranged from 3.7 kN for a 65 year-old 5th percentile female to 8.3 kN for a 45 year-old 50th percentile male, assuming no Achilles tension. The survivor function presented here may be used to estimate the risk of foot/ankle fracture that a blunt axial impact would pose to a human based on the peak tibial axial force measured by an anthropomorphic test device.
Background: Concussions in American football remain a high priority of sports injury prevention programs. Detailed video review provides important information on causation, the outcomes of rule changes, and guidance on future injury prevention strategies. Purpose: Documentation of concussions sustained in National Football League games played during the 2015-2016 and 2016-2017 seasons, including consideration of video views unavailable to the public. Study Design: Descriptive epidemiology study. Methods: All reported concussions were reviewed with all available video footage. Standardized terminology and associated definitions were developed to describe and categorize the details of each concussion. Results: Cornerbacks sustained the most concussions, followed by wide receivers, then linebackers and offensive linemen. Half (50%) of concussions occurred during a passing play, 28% during a rushing play, and 21% on a punt or kickoff. Tackling was found to be the most common activity of concussed players, with the side of the helmet the most common helmet impact location. The distribution of helmet impact source—the object that contacted the concussed player’s helmet—differed from studies of earlier seasons, with a higher proportion of helmet-to-body impacts (particularly shoulder) and helmet-to-ground impacts and with a lower proportion of helmet-to-helmet impacts. Helmet-to-ground concussive impacts were notable for the high prevalence of impacts to the back of the helmet and their frequency during passing plays. Conclusion: Concussion causation scenarios in the National Football League have changed over time. Clinical Relevance: The results of this study suggest the need for expanded evaluation of concussion countermeasures beyond solely helmet-to-helmet test systems, including consideration of impacts with the ground and with the body of the opposing player. It also suggests the possibility of position-specific countermeasures as part of an ongoing effort to improve safety.
Eversion of an axially loaded and dorsiflexed ankle may be an important injury mechanism for fracture of the lateral process of the talus among snowboarders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.