The head impact exposure for athletes involved in football at the college and high school levels has been well documented; however, the head impact exposure of the youth population involved with football has yet to be investigated, despite its dramatically larger population. The objective of this study was to investigate the head impact exposure in youth football. Impacts were monitored using a custom 12 accelerometer array equipped inside the helmets of seven players aged 7–8 years old during each game and practice for an entire season. A total of 748 impacts were collected from the 7 participating players during the season, with an average of 107 impacts per player. Linear accelerations ranged from 10 to 100 g, and the rotational accelerations ranged from 52 to 7694 rad/s2. The majority of the high level impacts occurred during practices, with 29 of the 38 impacts above 40 g occurring in practices. Although less frequent, youth football can produce high head accelerations in the range of concussion causing impacts measured in adults. In order to minimize these most severe head impacts, youth football practices should be modified to eliminate high impact drills that do not replicate the game situations.
The quality of telepresence provided by a force-reflecting teleoperator is determined, for the most part, by the fidelity of the contact-force information fed back to the operator. These fed-back forces, however, also directly influence system stability, and in this paper we investigate the relationship between fidelity and stability with a view toward understanding how stability considerations impose fundamental limits on system performance. The key idea of our work is to draw an explicit distinction between the information conveyed by the force signal and the energy inherent in that signal. Using known physiological properties of the operator, we argue that there exists a natural partitioning between information and energy wherein information is conveyed at frequencies above roughly 30 Hz, while the energetic interaction between the slave and the environment takes place at frequencies below this. We embody this distinction in a two-channel framework that we claim provides insight into the design of force-reflecting systems. Using a 1-DOF model, we study the effect of various system characteristics, notably mass, stiffness, and damping properties, on performance and stability. This model is used to derive expressions for the maximum force-reflection ratio that guarantees stability against pure-stiffness environments and to investigate the role of various compensation elements, including local force control around the slave. Finally, a framework is developed for force-reflecting teleoperation that maximizes the force information conveyed to the operator, subject to the constraints imposed by stability considerations.
When the leg rods of a fully in-parallel manipulator are fixed in their lengths, it is usual that the device can be assembled in several distinct ways. Sometimes it happens that motion between such assemblies can take place such that the linkage is never at a special configuration; that is, a configuration where the moving-platform body acquires uncontrollable freedom relative to the base. The possibility of such motion has implications for control. Focusing on 3-3 devices, we present a geometric explanation of how these motions arise, and give a sufficient condition for their existence. For the 3-3 planar-motion device, we show that never-special assembly changing motions can be excluded by making platform and base triangles similar, and we conjecture that appropriate, perhaps identical, specialization for the octahedral manipulator has the same effect.
For several years, Virginia Tech and other schools have measured the frequency and severity of head impacts sustained by collegiate American football players in real time using the Head Impact Telemetry (HIT) System of helmet-mounted accelerometers. In this study, data from 37,128 head impacts collected at Virginia Tech during games from 2006 to 2010 were analyzed. Peak head acceleration exceeded 100 g in 516 impacts, and the Head Injury Criterion (HIC) exceeded 200 in 468 impacts. Four instrumented players in the dataset sustained a concussion. These data were used to develop risk curves for concussion as a function of peak head acceleration and HIC. The validity of this biomechanical approach was assessed using epidemiological data on concussion incidence from other sources. Two specific aspects of concussion incidence were addressed: the variation by player position, and the frequency of repeat concussions. The HIT System data indicated that linemen sustained the highest overall number of head impacts, while skill positions sustained a higher number of more severe head impacts (peak acceleration > 100 g or HIC > 200). When weighted using injury risk curves, the HIT System data predicted a higher incidence of concussion in skill positions compared to linemen at rates that were in strong agreement with the epidemiological literature (Pearson's r = 0.72-0.87). The predicted rates of repeat concussions (21-39% over one season and 33-50% over five seasons) were somewhat higher than the ranges reported in the epidemiological literature. These analyses demonstrate that simple biomechanical parameters that can be measured by the HIT System possess a high level of power for predicting concussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.