This review reevaluates the importance of interspecific competition in the population biology of phytophagous insects and assesses factors that mediate competition. An examination of 193 pair-wise species interactions, repre senting all major feeding guilds, provided information on the occurrence, frequency, symmetry, consequences, and mechanisms of competition. Inter specific competition occurred in 76% of interactions, was often asymmetric, and was frequent in most guilds (sap feeders, wood and stem borers, seed and fruit feeders) except free-living mandibulate folivores. Phytophagous insects were more likely to compete if they were closely related, introduced, sessile, aggr egative, fed on discrete resources, and fed on forbs or grasses. Interference 297
Herein we report results of transplant experiments that link variation in host plant quality to herbivore fitness at the local scale (among adjacent plants) with the process of local (demic) adaptation at the landscape scale to explain the observed distribution of the specialist gall former Belonocnema treatae (Hymenoptera: Cynipidae) within populations of its host plant, Quercus fusiformis. Field surveys show that leaf gall densities vary by orders of magnitude among adjacent trees and that high-gall-density trees are both rare (< 5%) and patchily distributed. B. treatae from each of five high-gall-density trees were reared on (1) the four nearest low-gall-density trees, (2) the four alternative high-gall-density trees, and (3) their natal trees (control). Each treatment (source X rearing site) was replicated three times. Nine components of performance that sequentially contribute to fitness were evaluated with over 21000 galls censused across the 25 experimental trees. When reared on their natal trees and compared with low-gall-density neighbors, transplanted gall formers had higher gall initiation success (P < 0.05), produced more (P < 0.001) and larger galls (P < 0.001), and produced a higher proportion of galls that exceeded the threshold size for natural enemy avoidance (P < 0.05). Comparison of gall-former performance on natal vs. alternative high-gall-density trees demonstrated significant (P < 0.001) differences in six performance measures with five differing in the direction predicted by the hypothesis of local adaptation. Overall, these linked experiments document direct and indirect effects of host plant variation on gall-former performance and demonstrate convincingly that (1) high-gall-density trees equate to high-quality trees that are surrounded by trees of relatively lower quality to the herbivore and (2) gall-former populations have become locally adapted to individual trees.
An enclosed colony of bumblebees (Bombus pennsylvanicus) was restricted to foraging on two artificial flower types. The means and variances were adjusted in the two flower types in order to detect risk sensitivity. Both the mean and the variance contributed to the bees' foraging decisions. A series of experiments was designed to construct the bees' indifference curve under a variety of ecological conditions. The difference curve represents combinations of mean and variance in nectar reward for which bees showed no preference. In three of the four experiments there was a positive tradeoff between the mean and the variance, i.e., a relatively more variable flower type could be compensated for by increasing its expected reward. The quantitative nature of the tradeoff is shown to be sensitive to ecological parameters (e.g., spatial distribution of flowers) and independent behavioral parameters (e.g., intrinsic color preference).
All organisms exist within a complex network of interacting species, thus evolutionary change may have reciprocal effects on multiple taxa. Here, we demonstrate “cascading reproductive isolation,” whereby ecological differences that reduce gene flow between populations at one trophic level affect reproductive isolation (RI) among interacting species at the next trophic level. Using a combination of field, laboratory and common‐garden studies and long‐term herbaria records, we estimate and evaluate the relative contribution of temporal RI to overall prezygotic RI between populations of Belonocnema treatae, a specialist gall‐forming wasp adapted to sister species of live oak (Quercus virginiana and Q. geminata). We link strong temporal RI between host‐associated insect populations to differences between host plant budbreak phenology. Budbreak initiates flowering and the production of new leaves, which are an ephemeral resource critical to insect reproduction. As flowering time is implicated in RI between plant species, budbreak acts as a “multitrophic multi‐effect trait,” whereby differences in budbreak phenology contribute to RI in plants and insects. These sister oak species share a diverse community of host‐specific gall‐formers and insect natural enemies similarly dependent on ephemeral plant tissues. Thus, our results set the stage for testing for parallelism in a role of plant phenology in driving temporal cascading RI across multiple species and trophic levels.
Ecological speciation occurs when reproductive isolation evolves as a consequence of divergent natural selection among environments. A direct prediction of this process is that ecologically divergent pairs of populations will exhibit greater reproductive isolation than ecologically similar pairs of populations. By comparing allopatric populations of the cynipid gall wasp Belonocnema treatae infesting Quercus virginiana and Quercus geminata, we tested the role that divergent host use plays in generating ecological divergence and sexual isolation. We found differences in body size and gall structure associated with divergent host use, but no difference in neutral genetic divergence between populations on the same or different host plant. We observed significant assortative mating between populations from alternative host plants but not between allopatric populations on the same host plant. Thus, we provide evidence that divergent host use promotes speciation among gall wasp populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.