Summary
We investigated feasibility of the Full‐length complementary DNA OvereXpression (FOX) system as a mutagenesis approach in poplar, using developing xylem tissue. The main goal was to assess the overall mutation rate and if the system will increase instances of mutants affected in traits linked to the xylem tissue. Indeed, we found a high mutation rate of 17.7%, whereas 80% of all mutants were significantly affected in cellulose, lignin and/or hemicellulose. Cell wall biosynthesis is a major process occurring during xylem development. Enrichment of mutants affected in cell wall composition suggests that the tissue source for the FOX library influenced the occurrence of mutants affected in a trait linked to this tissue. Additionally, we found that FLcDNAs from mutants affected in cell wall composition were homologous to genes known to be involved in cell wall biosynthesis and most recovered FLcDNAs corresponded to genes whose native expression was highest in xylem. We characterized in detail a mutant line with increased diameter. The phenotype was caused by a poplar homolog of LONELY GUY 1 (LOG1), which encodes an enzyme in cytokinin biosynthesis and significantly increased xylem proliferation. The causative role of LOG1 in the observed phenotype was further reaffirmed by elevated cytokinin concentration in the mutant and recapitulation overexpression experiment wherein multiple independent lines phenocopied the original FOX mutant. Our experiments show that the FOX approach can be efficiently used for gene discovery and molecular interrogation of traits specific to woody perennial growth and development.
Red oaks (Quercus sect. Lobatae) are a taxonomic group of hardwood trees which occur in swamp forests, subtropical chaparral, and savannahs from Columbia to Canada. They cover a wide range of ecological niches, and many species are thought to be able to cope with current trends in climate change. Genus Quercus encompasses ca. 500 species, of which ca. 80 make up sect. Lobatae. Species diversity is greatest within the southeastern United States and within the northern and eastern regions of Mexico. This review discusses the weak reproductive barriers between species of red oaks and the effects this has on speciation and niche range. Distribution and diversity have been shaped by drought adaptations common to the species of sect. Lobatae, which enable them to fill various xeric niches across the continent. Drought adaptive traits of this taxonomic group include deciduousness, deep tap roots, ring-porous xylem, regenerative stump sprouting, greater leaf thickness, and smaller stomata. The complex interplay between these anatomical and morphological traits have given red oaks features of drought tolerance and avoidance. Here, we discuss physiological and genetic components of these adaptations to address how many species of sect. Lobatae reside within xeric sites and/or sustain normal metabolic function during drought. Although extensive drought adaptation appears to give sect. Lobatae a resilience to climate change, aging tree stands, oak life history traits, and the current genetic structures places many red oak species at risk. Furthermore, oak decline, a complex interaction between abiotic and biotic agents, has severe effects on red oaks, and is likely to accelerate species decline and fragmentation. We suggest that assisted migration can be used to avoid species fragmentation and increase climate change resilience of sect. Lobatae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.