a b s t r a c tHigh power ultrasonic spot welding (USW) is a low heat input solid-state joining process that may offer a solution for welding difficult dissimilar-material couples, like magnesium (Mg) to aluminium (Al) for automotive body applications. However, the high strain rate dynamic deformation in USW has been claimed to accelerate inter-diffusion rates in dissimilar joints. The interfacial reaction between Al, AA6111, and Mg AZ31 alloys has been studied as a function of welding energy. For the optimum welding condition of 600 J (0.4 s) the reaction layer thickness was already $ 5 mm thick. Intermetallic reaction centres were found to nucleate within microwelds at the interface at very short welding times and spread and grow rapidly to form a continuous layer, composed of two sub-layers of Al 12 Mg 17 and Al 3 Mg 2 . Interface liquation was also found for longer welding times at temperatures below the recognised lowest eutectic reaction temperature in the Al-Mg binary system. Modelling has been used to show that the solid state reaction kinetics were over twice the rate expected from parabolic growth predictions made using rate constants obtained under static test conditions. The reasons for this discrepancy and the depressed melting reaction are discussed.
Abstract-Small dispersoid particles inhibit recrystallisation and are thus critical in controlling the grain structure of many high strength commercial aluminium alloys. A general, physical model has been developed for the precipitation of Al 3 Zr dispersoids in aluminium alloys. The predictions of the model have been compared with results of an experimental investigation of Al 3 Zr precipitation in 7050. The model has been shown to faithfully reproduce the distribution of dispersoids observed in this alloy, correctly predicting dispersoid free zones observed in interdendritic regions and at grain boundaries. Furthermore, the predicted precipitation kinetics agree well with experimental observation. The model has been used to study the effects of homogenisation conditions and alloy composition on dispersoid formation and has been shown to be a powerful tool for optimising the dispersoid distribution in 7xxx series aluminium alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.