The rate coefficients for reactions of hydroxyl radical with aromatic hydrocarbons were measured in acetonitrile using a novel laser flash photolysis method. Comparison of kinetic data obtained in acetonitrile with those obtained in aqueous solution demonstrates an unexpected solvent effect on the reactivity of hydroxyl radical. In particular, reactions of hydroxyl radical with benzene were faster in water than in acetonitrile, and by a significant factor of 65. Computational studies, at the B3LYP and CBS-QB3 levels, have confirmed the rate enhancement of hydroxyl radical addition to benzene via calculation of the transition states in the presence of explicit solvent molecules as well as a continuum dielectric field. The origin of the rate enhancement lies entirely in the structures of the transition states and not in the pre-reactive complexes. The calculations reveal that the hydroxyl radical moiety becomes more anionic in the transition state and, therefore, looks more like hydroxide anion. In the transition states, solvation of the incipient hydroxide anion is more effective with water than with acetonitrile and provides the strong energetic advantage for a polar solvent capable of hydrogen bonding. At the same time, the aromatic unit looks more like the radical cation in the transition state. The commonly held view that hydroxyl radical is electrophilic in its reactions with DNA bases is, therefore, strongly dependent on the ability of the organic substrate to stabilize the resulting radical cation.
Laser flash photolysis (LFP) of acetonitrile solutions of N-hydroxypyridin-2-thione in the presence of trans-stilbene generates a transient absorbance at 392 nm, attributed to the addition of hydroxyl radical to stilbene. The observed transient absorbance was used in competitive LFP experiments to determine relative rates of reaction for hydroxyl radical with a range of aromatic hydrocarbons in acetonitrile. Structure-reactivity relationships for the reaction of hydroxyl radical with arenes are derived. With these aromatic hydrocarbons, we observe a good correlation between the rates of hydroxyl-radical reaction and the ionization potential of the arene. Kinetic isotope effects are consistent with hydroxyl-radical addition being the dominant reaction pathway with the arene.
The rate of coupling of alkyl radicals with the persistent aminoxyl radical 1,1,3,3-tetramethylisoindolin-N-oxyl (1) has been used as a kinetic probe to determine absolute rate coefficients for the addition of alkyl radicals to methyl acrylate. The results are discussed in terms of the role of the structure and functionalization of the attacking radical on the rates of addition, particularly as they affect steric, polar, and enthalpic factors. The aminoxyl method is assessed against other methods for determining free radical addition rate coefficients.
The photochemistry of azidopyridine 1-oxides was studied using an array of glass and matrix isolation techniques. As with room temperature, the photochemistry of 4-azidopyridine 1-oxide is dominated by triplet nitrene chemistry. However, in the case of the 3-azide, matrix photolysis indicates the formation of diazabicyclo[4.1.0]hepta-2,4,6-triene N-oxide and diazacycloheptatetraene N-oxide intermediates as well as triplet nitrene.
The absorption and fluorescence spectra of 3-aminobenzo-1,2,4-triazine di-N-oxide (tirapazamine) have been recorded and exhibit a dependence on solvent that correlates with the Dimroth ET30 parameter. Time-dependent density functional theory calculations reveal that the transition of tirapazamine in the visible region is pi-->pi* in nature. The fluorescence lifetime is 98+/-2 ps in water. The fluorescence quantum yield is approximately 0.002 in water. The fluorescence of tirapazamine is efficiently quenched by electron donors via an electron-transfer process. Linear Stern-Volmer fluorescence quenching plots are observed with sodium azide, potassium thiocyanate, guanosine monophosphate and tryptophan (Trp) methyl ester hydrochloride. Guanosine monophosphate, tyrosine (Tyr) methyl ester hydrochloride and Trp methyl ester hydrochloride appear to quench the fluorescence at a rate greater than diffusion control implying that these substrates complex with tirapazamine in its ground state. This complexation was detected by absorption spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.