The rate coefficients for reactions of hydroxyl radical with aromatic hydrocarbons were measured in acetonitrile using a novel laser flash photolysis method. Comparison of kinetic data obtained in acetonitrile with those obtained in aqueous solution demonstrates an unexpected solvent effect on the reactivity of hydroxyl radical. In particular, reactions of hydroxyl radical with benzene were faster in water than in acetonitrile, and by a significant factor of 65. Computational studies, at the B3LYP and CBS-QB3 levels, have confirmed the rate enhancement of hydroxyl radical addition to benzene via calculation of the transition states in the presence of explicit solvent molecules as well as a continuum dielectric field. The origin of the rate enhancement lies entirely in the structures of the transition states and not in the pre-reactive complexes. The calculations reveal that the hydroxyl radical moiety becomes more anionic in the transition state and, therefore, looks more like hydroxide anion. In the transition states, solvation of the incipient hydroxide anion is more effective with water than with acetonitrile and provides the strong energetic advantage for a polar solvent capable of hydrogen bonding. At the same time, the aromatic unit looks more like the radical cation in the transition state. The commonly held view that hydroxyl radical is electrophilic in its reactions with DNA bases is, therefore, strongly dependent on the ability of the organic substrate to stabilize the resulting radical cation.
Laser flash photolysis (LFP) of acetonitrile solutions of N-hydroxypyridin-2-thione in the presence of trans-stilbene generates a transient absorbance at 392 nm, attributed to the addition of hydroxyl radical to stilbene. The observed transient absorbance was used in competitive LFP experiments to determine relative rates of reaction for hydroxyl radical with a range of aromatic hydrocarbons in acetonitrile. Structure-reactivity relationships for the reaction of hydroxyl radical with arenes are derived. With these aromatic hydrocarbons, we observe a good correlation between the rates of hydroxyl-radical reaction and the ionization potential of the arene. Kinetic isotope effects are consistent with hydroxyl-radical addition being the dominant reaction pathway with the arene.
Pulmonary fibrosis is the leading cause of death in systemic sclerosis (SSc). Sirtuin1 (SIRT1) is a deacetylase with known antiinflammatory and antifibrotic activity in the liver, kidney, and skin. The role of SIRT1 in SSc-related pulmonary fibrosis is unknown. In the present work, we determined that the expression of SIRT1 in peripheral blood mononuclear cells of patients with SSc with pulmonary fibrosis is lower than that in patients with SSc without pulmonary fibrosis. In in vivo studies of bleomycin-induced lung fibrosis in mice, SIRT1 activation with resveratrol reduced collagen production when it was administered either prophylactically during the inflammatory stage or after the development of fibrosis. Furthermore, SIRT1 activation or overexpression inhibited tumor necrosis factor-α-induced inflammatory responses in vitro in human fetal lung fibroblasts, depletion of SIRT1 in fibroblasts enhanced inflammation, and these effects were related to changes in the acetylation of NF-κB. In addition, SIRT1 activation or exogenous overexpression inhibited collagen production in vitro, and these manipulations also inhibited fibrosis via inactivation of transforming growth factor-β/mothers against decapentaplegic homolog and mammalian target of rapamycin signaling. Taken together, our results show that a loss of SIRT1 may participate in the pathogenesis of SSc-related pulmonary fibrosis, and that SIRT1 activation is an effective treatment for both the early (inflammatory) and late (fibrotic) stages of pulmonary fibrosis. Thus, SIRT1 may be a promising therapeutic target in the management of SSc-related pulmonary fibrosis.
The photoreaction between riboflavin tetraacetate and nucleosides was investigated using time-resolved infrared spectroscopy (TRIR), laser flash photolysis with UV−vis detection, fluorescence quenching, absorption spectroscopy, and density functional theory calculations. Riboflavin tetraacetate (RBTA) was studied experimentally with indole and with Sheu and Foote's organic soluble silylated guanosine (G‘). Lumiflavin and (R)-2-amino-(S)-4-hydroxy-(R)-5-(hydroxymethyl)-tetrahydrofuran were used as computational models for RBTA and for the sugar moiety of the nucleoside, respectively, using density functional theory calculations (B3LYP/6-31G* and B3LYP/6-31+G**). Vibrational spectra were also calculated for the transient species. Time-resolved infrared spectroscopic data obtained using RBTA are in excellent agreement with the calculated spectra for the triplet flavin, and in the presence of silylated guanosine, with the formation of the most stable hydroflavin radical, RBTH, by an electron transfer−proton transfer mechanism. Although the gas-phase calculations indicate that abstraction of a hydrogen atom from the sugar is slightly exothermic, this reaction does not proceed at a rate measurable as monitored by TRIR spectroscopy. Singlet RBTA is also quenched by G‘ in methylene chloride. Stern−Volmer analysis of the fluorescence quenching data indicates that this reaction proceeds with a rate constant of 8.7 × 108 M-1 s-1.
In human cancers, dysregulated expression of LIM-homeobox gene 2 (LHX2) and downregulation of miR-1238 has been reported separately. However, the relationship between them remains unclear. We investigated the functional contribution of miR-1238 to the regulation of LHX2 in non-small cell lung cancer (NSCLC). Here, computational algorithms predicted that the 3′-untranslated region (3′-UTR) of LHX2 is a target of miR-1238. Luciferase assays validated that miR-1238 directly bound to 3′-UTR of LHX2. qRT-PCR and western blot analyses further confirmed that overexpression of miR-1238 mimic in NSCLC A549 and LTEP-α-2 cells inhibited endogenous expression of LHX2 mRNA and protein. Moreover, ectopic expression of miR-1238 in NSCLC A549 and LTEP-α-2 cells suppressed cellular viability and proliferation. siRNA-induced knockdown of LHX2 copied the phenotype of miR-1238 overexpression in NSCLC A549 and LTEP-α-2 cells and LHX2 knockdown inhibited cell cycle. In addition, miR-1238 expression was frequently decreased in human NSCLC tissues and reversely correlated with LHX2 expression, which was increased in NSCLC tissues. Collectively, our findings demonstrate that miR-1238 inhibit the proliferation of NSCLC cells at least partly via repression of LHX2, shedding light on the mechanistic interaction of miR-1238 and LHX2 in NSCLC carcinogenesis. Furthermore, our data suggest that expression of miR-1238 could be a promising therapeutic strategy for NSCLC treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.