The emergence of wide-bandgap devices, e.g. silicon carbide (SiC), has the potential to enable very high-density power converter design with high-switching frequency operation capability. A comprehensive design tool with a holistic design approach is critical to maximise the overall system power density, e.g by identifying the optimal switching frequency. This paper presents a system level design tool that optimises the power density (volume or mass) of a 3-phase, 2-level DC-AC converter. The design tool optimises the selection of the devices, heatsink and passive components (including the design of the line, EMI and DC-link filters) to maximise the power density. The structure of the optimisation algorithm has been organised to reduce the number of potential design combinations by over 99%, and thus produces fast simulation times. The design tool predicts that when SiC devices are used instead of Si ones, the power density is increased by 159.4%. A 5 kW, 600 V DC-link, 3-phase, 2level DC-AC converter was experimentally evaluated in order to confirm the accuracy of the design tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.