Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen leveldependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/ functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.receptor P silocybin is the prodrug of psilocin (4-hydroxy-dimethyltryptamine), the primary hallucinogenic component of magic mushrooms, and a classic psychedelic ("mind-manifesting") drug. Psilocybin has been used for centuries in healing ceremonies (1) and more recently in psychotherapy (2); it is capable of stimulating profound existential experiences (3), which can leave a lasting psychological impression (4). However, despite a wealth of literature on its phenomenology, we currently know very little about how its effects are produced in the brain. The present study sought to address this question using complementary functional MRI (fMRI) techniques and a protocol designed to image the transition from normal waking consciousness to the psychedelic state. Two groups of healthy subjects were scanned using arterial spin labeling (ASL) perfusion and blood-oxygen level-dependent (BOLD) fMRI during intravenous infusion of psilocybin. Infused over 60 s (2 mg in 10-mL saline), psilocybin's subjective effects begin within seconds (5), allowing the capture of the corresponding change in brain state.Results ASL Perfusion fMRI. Fifteen healthy, hallucinogen-experienced subjects (five females), mean age 34.1 (SD 8.2) were scanned with ASL. Subjects underwent an anatomical scan followed by two taskfree functional scans, each lasting 18 min. Subjects were instructed to relax and a fixation cross was displayed. Solutions were inf...
D-9-tetrahydrocannabinol (D-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether D-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by D-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of D-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered D-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by D-9-THC. D-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by D-9-tetrahydrocannabinol. D-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD's ability to block the psychotogenic effects of D-9-THC.
The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an update on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on in vivo neuroimaging studies in patients and clinical high-risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally, the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed.
Community-based studies suggest that cannabis products that are high in Δ⁹-tetrahydrocannabinol (THC) but low in cannabidiol (CBD) are particularly hazardous for mental health. Laboratory-based studies are ideal for clarifying this issue because THC and CBD can be administered in pure form, under controlled conditions. In a between-subjects design, we tested the hypothesis that pre-treatment with CBD inhibited THC-elicited psychosis and cognitive impairment. Healthy participants were randomised to receive oral CBD 600 mg (n=22) or placebo (n=26), 210 min ahead of intravenous (IV) THC (1.5 mg). Post-THC, there were lower PANSS positive scores in the CBD group, but this did not reach statistical significance. However, clinically significant positive psychotic symptoms (defined a priori as increases ≥ 3 points) were less likely in the CBD group compared with the placebo group, odds ratio (OR)=0.22 (χ²=4.74, p<0.05). In agreement, post-THC paranoia, as rated with the State Social Paranoia Scale (SSPS), was less in the CBD group compared with the placebo group (t=2.28, p<0.05). Episodic memory, indexed by scores on the Hopkins Verbal Learning Task-revised (HVLT-R), was poorer, relative to baseline, in the placebo pre-treated group (-10.6 ± 18.9%) compared with the CBD group (-0.4% ± 9.7 %) (t=2.39, p<0.05). These findings support the idea that high-THC/low-CBD cannabis products are associated with increased risks for mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.