Damage to skin collagen and elastin (extracellular matrix) is the hallmark of long-term exposure to solar ultraviolet irradiation, and is believed to be responsible for the wrinkled appearance of sun-exposed skin. We report here that matrix-degrading metalloproteinase messenger RNAs, proteins and activities are induced in human skin in vivo within hours of exposure to ultraviolet-B irradiation (UVB). Induction of metalloproteinase proteins and activities occurred at UVB doses well below those that cause skin reddening. Within minutes, low-dose UVB upregulated the transcription factors AP-1 and NF-kappa B, which are known to be stimulators of metalloproteinase genes. All-trans retinoic acid, which transrepresses AP-1 (ref. 8), applied before irradiation with UVB, substantially reduced AP-1 and metalloproteinase induction. We propose that elevated metalloproteinases, resulting from activation of AP-1 and NF-kappa B by low-dose solar irradiation, degrade collagen and elastin in skin. Such damage, if imperfectly repaired, would result in solar scars, which through accumulation from a lifetime of repeated low-dose sunlight exposure could cause premature skin ageing (photoageing).
Multiple exposures to ultraviolet irradiation lead to sustained elevations of matrix metalloproteinases that degrade skin collagen and may contribute to photoaging. Treatment with topical tretinoin inhibits irradiation-induced matrix metalloproteinases but not their endogenous inhibitor.
Damage to human skin due to ultraviolet light from the sun (photoaging) and damage occurring as a consequence of the passage of time (chronologic or natural aging) are considered to be distinct entities. Photoaging is caused in part by damage to skin connective tissue by increased elaboration of collagen-degrading matrix metalloproteinases, and by reduced collagen synthesis. As matrix metalloproteinase levels are known to rise in fibroblasts as a function of age, and as oxidant stress is believed to underlie changes associated with both photoaging and natural aging, we determined whether natural skin aging, like photoaging, gives rise to increased matrix metalloproteinases and reduced collagen synthesis. In addition, we determined whether topical vitamin A (retinol) could stimulate new collagen deposition in sun-protected aged skin, as it does in photoaged skin. Sun-protected skin samples were obtained from 72 individuals in four age groups: 18-29 y, 30-59 y, 60-79 y, and 80+ y. Histologic and cellular markers of connective tissue abnormalities were significantly elevated in the 60-79 y and 80+ y groups, compared with the two younger age groups. Increased matrix metalloproteinase levels and decreased collagen synthesis/expression were associated with this connective tissue damage. In a separate group of 53 individuals (80+ y of age), topical application of 1% vitamin A for 7 d increased fibroblast growth and collagen synthesis, and concomitantly reduced the levels of matrix-degrading matrix metalloproteinases. Our findings indicate that naturally aged, sun-protected skin and photoaged skin share important molecular features including connective tissue damage, elevated matrix metalloproteinase levels, and reduced collagen production. In addition, vitamin A treatment reduces matrix metalloproteinase expression and stimulates collagen synthesis in naturally aged, sun-protected skin, as it does in photoaged skin.
Aged human skin is fragile because of fragmentation and loss of type I collagen fibrils, which confer strength and resiliency. We report here that dermal fibroblasts express increased levels of collagen-degrading matrix metalloproteinases-1 (MMP-1) in aged (>80 years old) compared with young (21 to 30 years old) human skin in vivo. Transcription factor AP-1 and ␣21 integrin, which are key regulators of MMP-1 expression, are also elevated in fibroblasts in aged human skin in vivo. MMP-1 treatment of young skin in organ culture causes fragmentation of collagen fibrils and reduces fibroblast stretch, consistent with reduced mechanical tension , as observed in aged human skin. Limited fragmentation of three-dimensional collagen lattices with exogenous MMP-1 also reduces fibroblast stretch and mechanical tension. Furthermore, fibroblasts cultured in fragmented collagen lattices express elevated levels of MMP-1, AP-1, and ␣21 integrin. Importantly, culture in fragmented collagen raises intracellular oxidant levels and treatment with antioxidant MitoQ 10 significantly reduces MMP-1 expression. These data identify positive feedback regulation that couples age-dependent MMP-1-catalyzed collagen fragmentation and oxidative stress. We propose that this self perpetuating cycle promotes human skin aging. These data extend the current understanding of the oxidative theory of aging beyond a cellular-centric view to include extracellular matrix and the critical role that connective tissue microenvironment plays in the biology of aging. Skin connective tissue (dermis) provides structural support for the skin's vasculature, appendages, and epidermis, which are vital to the function of skin. Structural integrity and function of the dermis are primarily dependent on its extracellular matrix, which is primarily composed of type I collagen fibrils. Type I collagen is the most abundant structural protein in skin, 1 and fragmented collagen fibrils are prominent, characteristic features of aged human skin in vivo.2-4 This fragmentation seriously impairs both the mechanical properties of skin, and the functions of cells that reside within the dermis. Clinically, this impairment manifests as delayed wound healing, reduced vascularization, propensity to bruise, and thin skin. Failure of normal functional interactions among dermal cells and their extracellular matrix microenvironment underlie these age-dependent phenotypic alterations. 6Damage to the collagenous extracellular matrix of the dermis can be observed at both the histological and ultrastructural level. 5,[7][8][9] In young dermis, intact, tightly packed, well-organized, long collagen fibrils are abundant. In contrast, in aged dermis, collagen fibrils are fragmented, disorganized, and sparse, resulting in the appearance of amorphous open space. Quantitative biochemical analysis reveals that the amount of fragmented collagen is 4.3-fold greater in aged (Ͼ80 years old) compared with young (21 to 30 years old) human dermis in vivo.
To determine whether endogenous synthesis of new extracellular matrix may contribute to the degree and duration of clinical benefits derived from crosslinked hyaluronic acid dermal filler injections. Design:In vivo biochemical analyses after filler injections.Setting: Academic referral center.Participants: Eleven healthy volunteers (mean age, 74 years) with photodamaged forearm skin.Interventions: Filler and vehicle (isotonic sodium chloride) injected into forearm skin and skin biopsy specimens taken 4 and 13 weeks later.Main Outcome Measures: De novo synthesis of collagen, the major structural protein of dermal extracellular matrix, was assessed using immunohistochemical analysis, quantitative polymerase chain reaction, and electron microscopy.Results: Compared with controls, immunostaining in skin receiving cross-linked hyaluronic acid injections re-vealed increased collagen deposition around the filler. Staining for prolyl-4-hydroxylase and the C-terminal and Nterminal epitopes of type I procollagen was enhanced at 4 and 13 weeks after treatment (PϽ.05). Gene expression for types I and III procollagen as well as several profibrotic growth factors was also up-regulated at 4 and 13 weeks compared with controls (PϽ.05). Fibroblasts in filler-injected skin demonstrated a mechanically stretched appearance and a biosynthetic phenotype. In vitro, fibroblasts did not bind the filler, suggesting that cross-linked hyaluronic acid is not directly stimulatory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.