The major function of the placenta is to transfer nutrients and oxygen from the mother to the foetus and to assist in the removal of waste products from the foetus to the mother. In addition, it plays an important role in the synthesis of hormones, peptides and steroids that are vital for a successful pregnancy. The placenta provides a link between the circulations of two distinct individuals but also acts as a barrier to protect the foetus from xenobiotics in the maternal blood. However, the impression that the placenta forms an impenetrable obstacle against most drugs is now widely regarded as false. It has been shown that that nearly all drugs that are administered during pregnancy will enter, to some degree, the circulation of the foetus via passive diffusion. In addition, some drugs are pumped across the placenta by various active transporters located on both the fetal and maternal side of the trophoblast layer. It is only in recent years that the impact of active transporters such as P-glycoprotein on the disposition of drugs has been demonstrated. Facilitated diffusion appears to be a minor transfer mechanism for some drugs, and pinocytosis and phagocytosis are considered too slow to have any significant effect on fetal drug concentrations. The extent to which drugs cross the placenta is also modulated by the actions of placental phase I and II drug-metabolising enzymes, which are present at levels that fluctuate throughout gestation. Cytochrome P450 (CYP) enzymes in particular have been well characterised in the placenta at the level of mRNA, protein, and enzyme activity. CYP1A1, 2E1, 3A4, 3A5, 3A7 and 4B1 have been detected in the term placenta. While much less is known about phase II enzymes in the placenta, some enzymes, in particular uridine diphosphate glucuronosyltransferases, have been detected and shown to have specific activity towards marker substrates, suggesting a significant role of this enzyme in placental drug detoxification. The increasing experimental data on placental drug transfer has enabled clinicians to make better informed decisions about which drugs significantly cross the placenta and develop dosage regimens that minimise fetal exposure to potentially toxic concentrations. Indeed, the foetus has now become the object of intended drug treatment. Extensive research on the placental transfer of drugs such as digoxin and zidovudine has assisted with the safe treatment of the foetus with these drugs in utero. Improved knowledge regarding transplacental drug transfer and metabolism will result in further expansion of pharmacological treatment of fetal conditions.
A resurgence in the use of medical herbs in the Western world, and the co-use of modern and traditional therapies is becoming more common. Thus there is the potential for both pharmacokinetic and pharmacodynamic herb-drug interactions. For example, systems such as the cytochrome P450 (CYP) may be particularly vulnerable to modulation by the multiple active constituents of herbs, as it is well known that the CYPs are subject to induction and inhibition by exposure to a wide variety of xenobiotics. Using in vitro, in silico, and in vivo approaches, many herbs and natural compounds isolated from herbs have been identified as substrates, inhibitors, and/or inducers of various CYP enzymes. For example, St. John's wort is a potent inducer of CYP3A4, which is mediated by activating the orphan pregnane X receptor. It also contains ingredients that inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. Many other common medicinal herbs also exhibited inducing or inhibiting effects on the CYP system, with the latter being competitive, noncompetitive, or mechanism-based. It appears that the regulation of CYPs by herbal products is complex, depending on the herb type, their administration dose and route, the target organ and species. Due to the difficulties in identifying the active constituents responsible for the modulation of CYP enzymes, prediction of herb -drug metabolic interactions is difficult. However, herb-CYP interactions may have important clinical and toxicological consequences. For example, induction of CYP3A4 by St. John's wort may partly provide an explanation for the enhanced plasma clearance of a number of drugs, such as cyclosporine and innadivir, which are known substrates of CYP3A4, although other mechanisms including modulation of gastric absorption and drug transporters cannot be ruled out. In contrast, many organosulfur compounds, such as diallyl sulfide from garlic, are potent inhibitors of CYP2E1; this may provide an explanation for garlic's chemoproventive effects, as many mutagens require activation by CYP2E1. Therefore, known or potential herb -CYP interactions exist, and further studies on their clinical and toxicological roles are warranted. Given that increasing numbers of people are exposed to a number of herbal preparations that contain many constituents with potential of CYP modulation, high-throughput screening assays should be developed to explore herb-CYP interactions.Key Words: Herb; Cytochrome P450; Drug interactions.Abbreviations: Ah, aryl hydrocarbon; AUC, the area of the plasma concentrationtime curve; B[a]P, benzo[a]pyrene; C max , the maximum plasma concentration; CL int , intrinsic clearance; CYP, cytochrome P450; DAD, diallyl disulfide; DAS, diallyl sulfide; DASO, diallyl sulfoxide; DASO 2 , diallyl sulfone; DPS, dipropyl sulfide; DPDS, dipropyl disulfide; K i , inhibition constant; K m , Michaelis -Menten constant; NADPH, nicotinamide adenine dinucleotide phosphate; NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone; N-PiP, N-nitrosopiperidine; PgP, P-glycoprotein; PhIP...
ABSTRACT:Placental ATP binding cassette (ABC) transporters protect placental and fetal tissues by effluxing xenobiotics and endogenous metabolites. We have investigated the effects of cytokines and survival/growth factors, implicated in various placental pathologies, on ABC transporter expression and function in primary placental trophoblast cells. Treatment of primary term trophoblasts in vitro with tumor necrosis factor-␣ (TNF-␣) or interleukin (IL)-1 decreased mRNA and protein expression of apical transporters ABCB1/multidrug resistance gene product 1 (MDR1) and ABCG2/ breast cancer resistance protein (BCRP) protein by 40 to 50% (P < 0.05). In contrast, IL-6 increased mRNA and protein expression of the basolateral transporter ABCB4/MDR3 (P < 0.05), whereas ABCC1/MRP1 expression was unaltered. Pretreatment of trophoblasts with TNF-␣ over 48 h resulted in significantly decreased BCRP efflux activity (increased mitoxantrone accumulation) with minimal changes in MDR1/3 activity. Epidermal growth factor (EGF) and insulin-like growth factor II, on the other hand, significantly increased BCRP expression at the mRNA and protein level (P < 0.05); EGF treatment also increased BCRP functional activity. Estradiol stimulated BCRP, MDR1, and MDR3 mRNA and protein expression by 40 to 60% and increased MDR1/3 functional activity (P < 0.05). Progesterone had modest positive effects on MRP1 mRNA and MDR1 protein expression (P < 0.05). In conclusion, this study shows that proinflammatory cytokines, sex steroids, and growth factors exert independent effects on expression of apical and basolateral placental ABC transporters in primary trophoblast. Such changes could alter placental drug disposition, increase fetal susceptibility to toxic xenobiotics, and impact on placental viability and function.
drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast.
A substantial and growing consumer demand exists for plant-based functional foods that improve general health and wellbeing. Amongst consumed phytochemicals, the polyphenolic compounds tend to be the most bioactive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.