The major function of the placenta is to transfer nutrients and oxygen from the mother to the foetus and to assist in the removal of waste products from the foetus to the mother. In addition, it plays an important role in the synthesis of hormones, peptides and steroids that are vital for a successful pregnancy. The placenta provides a link between the circulations of two distinct individuals but also acts as a barrier to protect the foetus from xenobiotics in the maternal blood. However, the impression that the placenta forms an impenetrable obstacle against most drugs is now widely regarded as false. It has been shown that that nearly all drugs that are administered during pregnancy will enter, to some degree, the circulation of the foetus via passive diffusion. In addition, some drugs are pumped across the placenta by various active transporters located on both the fetal and maternal side of the trophoblast layer. It is only in recent years that the impact of active transporters such as P-glycoprotein on the disposition of drugs has been demonstrated. Facilitated diffusion appears to be a minor transfer mechanism for some drugs, and pinocytosis and phagocytosis are considered too slow to have any significant effect on fetal drug concentrations. The extent to which drugs cross the placenta is also modulated by the actions of placental phase I and II drug-metabolising enzymes, which are present at levels that fluctuate throughout gestation. Cytochrome P450 (CYP) enzymes in particular have been well characterised in the placenta at the level of mRNA, protein, and enzyme activity. CYP1A1, 2E1, 3A4, 3A5, 3A7 and 4B1 have been detected in the term placenta. While much less is known about phase II enzymes in the placenta, some enzymes, in particular uridine diphosphate glucuronosyltransferases, have been detected and shown to have specific activity towards marker substrates, suggesting a significant role of this enzyme in placental drug detoxification. The increasing experimental data on placental drug transfer has enabled clinicians to make better informed decisions about which drugs significantly cross the placenta and develop dosage regimens that minimise fetal exposure to potentially toxic concentrations. Indeed, the foetus has now become the object of intended drug treatment. Extensive research on the placental transfer of drugs such as digoxin and zidovudine has assisted with the safe treatment of the foetus with these drugs in utero. Improved knowledge regarding transplacental drug transfer and metabolism will result in further expansion of pharmacological treatment of fetal conditions.
The human microbiome includes trillions of bacteria, many of which play a vital role in host physiology. Numerous studies have now detected bacterial DNA in first-pass meconium and amniotic fluid samples, suggesting that the human microbiome may commence in utero . However, these data have remained contentious due to underlying contamination issues. Here, we have used a previously described method for reducing contamination in microbiome workflows to determine if there is a fetal bacterial microbiome beyond the level of background contamination. We recruited 50 women undergoing non-emergency cesarean section deliveries with no evidence of intra-uterine infection and collected first-pass meconium and amniotic fluid samples. Full-length 16S rRNA gene sequencing was performed using PacBio SMRT cell technology, to allow high resolution profiling of the fetal gut and amniotic fluid bacterial microbiomes. Levels of inflammatory cytokines were measured in amniotic fluid, and levels of immunomodulatory short chain fatty acids (SCFAs) were quantified in meconium. All meconium samples and most amniotic fluid samples (36/43) contained bacterial DNA. The meconium microbiome was dominated by reads that mapped to Pelomonas puraquae . Aside from this species, the meconium microbiome was remarkably heterogeneous between patients. The amniotic fluid microbiome was more diverse and contained mainly reads that mapped to typical skin commensals, including Propionibacterium acnes and Staphylococcus spp. All meconium samples contained acetate and propionate, at ratios similar to those previously reported in infants. P. puraquae reads were inversely correlated with meconium propionate levels. Amniotic fluid cytokine levels were associated with the amniotic fluid microbiome. Our results demonstrate that bacterial DNA and SCFAs are present in utero , and have the potential to influence the developing fetal immune system.
Prenatal testosterone may have a powerful masculinizing effect on postnatal physical characteristics. However, no study has directly tested this hypothesis. Here, we report a 20-year follow-up study that measured testosterone concentrations from the umbilical cord blood of 97 male and 86 female newborns, and procured three-dimensional facial images on these participants in adulthood (range: 21-24 years). Twenty-three Euclidean and geodesic distances were measured from the facial images and an algorithm identified a set of six distances that most effectively distinguished adult males from females. From these distances, a 'gender score' was calculated for each face, indicating the degree of masculinity or femininity. Higher cord testosterone levels were associated with masculinized facial features when males and females were analysed together (n ¼ 183; r ¼ 20.59), as well as when males (n ¼ 86; r ¼ 20.55) and females (n ¼ 97; r ¼ 20.48) were examined separately ( p-values , 0.001). The relationships remained significant and substantial after adjusting for potentially confounding variables. Adult circulating testosterone concentrations were available for males but showed no statistically significant relationship with gendered facial morphology (n ¼ 85, r ¼ 0.01, p ¼ 0.93). This study provides the first direct evidence of a link between prenatal testosterone exposure and human facial structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.