The outcome of the conference was the generation of 33 recommendations for the diagnosis and management of HHT, with at least 80% agreement amongst the expert panel for 30 of the 33 recommendations.
Hereditary hemorrhagic telangiectasia (HHT) is a vascular dysplasia characterized by telangiectases and arteriovenous malformations (AVMs) in particular locations described in consensus clinical diagnostic criteria published in 2000. Two genes in the transforming growth factor-beta (TGF-β) signaling pathway, ENG and ACVRL1, were discovered almost two decades ago, and mutations in these genes have been reported to cause up to 85% of HHT. In our experience, approximately 96% of individuals with HHT have a mutation in these two genes, when published (Curaçao) diagnostic criteria for HHT are strictly applied. More recently, two additional genes in the same pathway, SMAD4 and GDF2, have been identified in a much smaller number of patients with a similar or overlapping phenotype to HHT. Yet families still exist with compelling evidence of a hereditary telangiectasia disorder, but no identifiable mutation in a known gene. Recent availability of whole exome and genome testing has created new opportunities to facilitate gene discovery, identify genetic modifiers to explain clinical variability, and potentially define an increased spectrum of hereditary telangiectasia disorders. An expanded approach to molecular diagnostics for inherited telangiectasia disorders that incorporates a multi-gene next generation sequencing (NGS) HHT panel is proposed.
Hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome) is a disorder of development of the vasculature characterized by telangiectases and arteriovenous malformations in specific locations. It is one of most common monogenic disorders, but affected individuals are frequently not diagnosed. The most common features of the disorder, nosebleeds, and telangiectases on the lips, hands, and oral mucosa are often quite subtle. Optimal management requires an understanding of the specific presentations of these vascular malformations, especially their locations and timing during life. Telangiectases in the nasal and gastrointestinal mucosa and brain arteriovenous malformations generally present with hemorrhage. However, complications of arteriovenous malformations in the lungs and liver are generally the consequence of blood shunting through these abnormal blood vessels, which lack a capillary bed and thus result in a direct artery-to-vein connection. Mutations in at least five genes are thought to result in hereditary hemorrhagic telangiectasia, but mutations in two genes (ENG and ACVRL1/ALK1) cause approximately 85% of cases. The frequency of arteriovenous malformations in particular organs and the occurrence of certain rare symptoms are dependent on the gene involved. Molecular genetic testing is used to establish the genetic subtype of hereditary hemorrhagic telangiectasia in a clinically affected individual and family, and for early diagnosis to allow for appropriate screening and preventive treatment.
Hereditary hemorrhagic telangiectasia (HHT) is a genetically heterogeneous vascular dysplasia with multiple telangiectases and arteriovenous malformations and it is caused by mutations in endoglin gene (ENG) (HHT1) and activin A receptor type II-like 1 gene (ACVRL1) (HHT2). We evaluated 111 patients with HHT from 34 families by history, examination, screening for vascular malformations, and sequencing of both genes. We found mutations in 26 of the 34 kindreds (76%) analyzed-54% were in ENG and 46% were in ACVRL1. Mutations in ACVRL1 cluster largely in exons 7 and 8, but ENG mutations were widely distributed within that gene. We found that epistaxis had an earlier onset in patients with HHT1 than those with HHT2, but the severity by middle ages was similar. Pulmonary arteriovenous malformations were more frequent and on the average of larger size in HHT1. Hepatic vascular malformations were more common in patients with HHT2. Cerebral arteriovenous malformations were more common in patients with HHT1, but spinal arteriovenous malformations were seen only in patients with HHT2. Truncating mutations in ENG were associated with more affected organs and more severe hemorrhaging than were missense mutations. We conclude that HHT2 has a later onset than HHT1 and the former may disproportionately involve smaller vessels in tissues with more significant vascular remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.