In the absence of any family history, the presence of these two manifestations is sufficient for the unequivocal diagnosis of MFS. In absence of either of these two, the presence of a bonafide FBN1 mutation or a combination of systemic manifestations is required. For the latter a new scoring system has been designed. In this revised nosology, FBN1 testing, although not mandatory, has greater weight in the diagnostic assessment. Special considerations are given to the diagnosis of MFS in children and alternative diagnoses in adults. We anticipate that these new guidelines may delay a definitive diagnosis of MFS but will decrease the risk of premature or misdiagnosis and facilitate worldwide discussion of risk and follow-up/management guidelines.
The outcome of the conference was the generation of 33 recommendations for the diagnosis and management of HHT, with at least 80% agreement amongst the expert panel for 30 of the 33 recommendations.
In principle, transplantation of mesenchymal progenitor cells would attenuate or possibly correct genetic disorders of bone, cartilage and muscle, but clinical support for this concept is lacking. Here we describe the initial results of allogeneic bone marrow transplantation in three children with osteogenesis imperfecta, a genetic disorder in which osteoblasts produce defective type I collagen, leading to osteopenia, multiple fractures, severe bony deformities and considerably shortened stature. Three months after osteoblast engraftment (1.5-2.0% donor cells), representative specimens of trabecular bone showed histologic changes indicative of new dense bone formation. All patients had increases in total body bone mineral content ranging from 21 to 29 grams (median, 28), compared with predicted values of 0 to 4 grams (median, 0) for healthy children with similar changes in weight. These improvements were associated with increases in growth velocity and reduced frequencies of bone fracture. Thus, allogeneic bone marrow transplantation can lead to engraftment of functional mesenchymal progenitor cells, indicating the feasibility of this strategy in the treatment of osteogenesis imperfecta and perhaps other mesenchymal stem cell disorders as well.
Marfan syndrome is an inherited disorder of connective tissue manifested in the ocular, skeletal and cardiovascular systems. It is inherited as an autosomal dominant with high penetrance, but has great clinical variability. Linkage studies have mapped the Marfan locus to chromosome 15q15-21.3. There have been no reports of genetic heterogeneity in the syndrome. Following the identification of fibrillin (a glycoprotein component of the extracellular microfibril), immunohistopathological quantification of the protein in skin and fibroblast culture, and examination of fibrillin synthesis, extracellular transport, and incorporation into the extracellular matrix (D. M. Milewicz, R.E.P., E. S. Crawford and P. H. Byers, manuscript in preparation) have demonstrated abnormalities of fibrillin metabolism in most patients. A portion of the complementary DNA encoding fibrillin has been cloned and mapped by in situ hybridization to chromosome 15. Here we report that the fibrillin gene is linked to the Marfan phenotype (theta = 0.00; logarithm of the odds (lod) = 3.9) and describe a de novo missense mutation in the fibrillin gene in two patients with sporadic disease. We thus implicate fibrillin as the protein defective in patients with the Marfan syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.