Rheological parameters of drilling fluids, such as yield point and plastic viscosity, are required to determine the hydrodynamic components of pressure at various points in the circulation system during technological operations. It is essential to ensure a simple and accurate measurement of these parameters in the construction of oil and gas wells, however, existing methods are relatively expensive and the results obtained can be subjective. This article describes a newly developed method for measuring the plastic viscosity and yield point of the drilling fluid using a Marsh funnel, which will greatly simplify the procedure for determining the rheological parameters of drilling fluids and allow them to be measured directly on drilling rigs. When the geometrical parameters of the funnel are determined, the true viscosity parameters are calculated using simple formulas. The Marsh funnel is traditionally used on the drilling rig to measure the relative viscosity of the drilling fluid and is an inexpensive and simple device. The article provides comparative studies with standard methods for determining the rheological parameters of the drilling fluid. According to the results of the test method, comparisons are made of pressure losses in the circulation system of the drilling fluid on drilling rigs.
Most of oil companies today are focused on increasing the recovery factor from their oil fields. New drilling and well technologies as well as last advances in reservoir management, monitoring and Enhanced Oil Recovery (EOR) methods are thought to play a major role to meet the future demand of energy. Current decline in discovery of new oilfields intensified by a decline in oil prices make industrial companies to work on development of new efficient and economic techniques that will allow better production at lower cost. One such technology developed at Kazakh National Research University is presented in this paper. The latter propose the use of specific perforated holes on tubing liners in order to control the rate of water injection into variably permeable layers and to prevent non-uniform displacement of oil. The study was initially conducted on experimental facility that proved a positive correlation between the perforation density and water flow rates. Then the simulation test was performed using the data from several Kazakhstani oil fields. The results show an increase of sweep efficiency as well as a decrease in water-cut compared to traditional well case.
Wax deposition on inner surfaces of pipelines is a costly problem for the petroleum industry. This flow assurance problem is of particular interest during the production and transportation of waxy oils in cold environments. An understanding of known mechanisms and available thermodynamic models will be useful for the management and planning of mitigation strategies for wax deposition. This paper presents a critical review of wax prediction models used for estimation of wax deposition based on chemical hydrocarbon compositions and thermobaric condition. The comparative analysis is applied to highlight the effective mechanisms guiding the wax deposition, and how this knowledge can be used to model and provide solutions to reducing wax deposition issues. One group of thermodynamic models assume that the precipitated wax is a solid solution. These models are divided into two categories: ideal (Erickson and Pedersen models) and non-ideal solutions (Won and Coutinho models). In the other group of models, the wax phase consists of many solid phases (Lira-Galeana model). The authors summarized the limitations of the models, evaluated, and identified ways to represent the overview of existing thermodynamical models for predicting wax precipitation. Within the strong demand from industry, the results of this manuscript can aid to aspire engineers and researcher.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.