The octamer-binding transcription factor 4 (OCT4) is involved in regulating pluripotency and self-renewal maintenance of embryonic stem cells. Recently, misexpression of OCT4 has been also reported in some adult stem as well as cancer cells; a finding which is still controversial. In addition to the previously described spliced variants of the gene (e.g., OCT4A and OCT4B), we have recently identified a novel variant of the gene, designated as OCT4-B1. In this study, we investigated a potential expression and function of OCT4B1 in a series of gastric cancer tissues and a gastric adenocarcinoma cell line, AGS. Using the Taqman real-time PCR approach, we have detected the expression of OCT4B1 in tumors with no or much lower expression in marginal samples of the same patients (p < 0.002). We have also analyzed the effects of OCT4B1 knock-down in AGS cell line treated with specific siRNA directed toward OCT4B1. Our data revealed that interfering with the expression of OCT4B1 caused profound changes in the morphology and cell cycle distribution of the cells. Furthermore, down-regulation of OCT4B1 significantly elevated the relative activity of caspase-3/caspase-7 and the rate of apoptosis in the cells (more than 30%). All together, our findings suggest that OCT4B1 has a potential role in tumorigenesis of gastric cancer and candidates the variant as a new tumor marker with potential value in diagnosis and treatment of gastric cancer.On the basis of the cancer stem cell (CSC) hypothesis, a subpopulation of cells within tumors is responsible for the sustained growth and propagation of tumors. CSCs are also believed to be the main reason for the tumor relapse and resistance to therapy. These cells share various characteristics with normal tissue-specific adult stem cells, including selfrenewal potential. Based on this hypothesis, CSCs are originating either from the dysregulated self-renewal control in normal adult stem cells or through reprogramming of the somatic progenitor or differentiated cells within the tissue. [1][2][3][4][5] The octamer-binding transcription factor 4 (OCT4, also known as OCT3 and POU5F1) belongs to a family of transcription factors containing the POU DNA-binding domain. The encoded protein acts as a master self-renewal regulator in embryonic stem cells and plays a critical role in maintaining the pluripotent state of stem cells. OCT4 expression is strongly repressed following stem cell differentiation. 6-10 Several recent studies have demonstrated the unexpected expression of the OCT4 gene in some human cancer cell lines and tissues, 11-18 including gastric cancer. 19 The human OCT4 gene can potentially encode three spliced variants, designated as OCT4A, OCT4B and the newly discovered OCTB1. 20,21 OCT4A is primarily localized within the nucleus of the embryonic stem cells, where it sustains the selfrenewal and pluripotency properties of the cells. In contrast, OCT4B is mainly located within the cytoplasm of somatic cancer cell lines and apparently lacks any self-renewal regulatory role. 21,22 In ...
SUMMARY Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons.
SUMMARYTranscription factor codes play an essential role in neuronal specification and axonal guidance in both vertebrate and invertebrate organisms. However, how transcription codes regulate axon pathfinding remains poorly understood. One such code defined by the homeodomain transcription factor Even-skipped (Eve) and by the GATA 2/3 homologue Grain (Grn) is specifically required for motor axon projection towards dorsal muscles in Drosophila. Using different mutant combinations, we present genetic evidence that both Grn and Eve are in the same pathway as Unc-5 in dorsal motoneurons (dMNs). In grn mutants, in which dMNs fail to reach their muscle targets, dMNs show significantly reduced levels of unc-5 mRNA expression and this phenotype can be partially rescued by the reintroduction of unc-5. We also show that both eve and grn are required independently to induce expression of unc-5 in dMNs. Reconstitution of the eve-grn transcriptional code of a dMN in dMP2 neurons, which do not project to lateral muscles in Drosophila, is able to reprogramme those cells accordingly; they robustly express unc-5 and project towards the muscle field as dMNs. Each transcription factor can independently induce unc-5 expression but unc-5 expression is more robust when both factors are expressed together. Furthermore, dMP2 exit is dependent on the level of unc-5 induced by eve and grn. Taken together, our data strongly suggests that the eve-grn transcriptional code controls axon guidance, in part, by regulating the level of unc-5 expression.
The decline of neuronal synapses is an established feature of ageing accompanied by the diminishment of neuronal function, and in the motor system at least, a reduction of behavioural capacity. Here, we have investigated Drosophila motor neuron synaptic terminals during ageing. We observed cumulative fragmentation of presynaptic structures accompanied by diminishment of both evoked and miniature neurotransmission occurring in tandem with reduced motor ability. Through discrete manipulation of each neurotransmission modality, we find that miniature but not evoked neurotransmission is required to maintain presynaptic architecture and that increasing miniature events can both preserve synaptic structures and prolong motor ability during ageing. Our results establish that miniature neurotransmission, formerly viewed as an epiphenomenon, is necessary for the long-term stability of synaptic connections.
Axon navigation through the developing body of an embryo is a challenging and exquisitely precise process. Axonal processes within the nervous system harbor extremely complicated internal regulatory mechanisms that enable each of them to respond to environmental cues in a unique way, so that every single neuron has an exact stereotypical localization and axonal projection pattern. Receptors and adhesion molecules expressed on axonal membranes will determine their guidance properties. Axon guidance is thought to be controlled to a large extent through transcription factor codes. These codes would be responsible for the deployment of specific guidance receptors and adhesion molecules on axonal membranes to allow them to reach their targets. Although families of transcriptional regulators as well as families of guidance molecules have been conserved across evolution, their relationships seem to have developed independently. This review focuses on the midline and the neuromuscular system in both vertebrates and Drosophila in which such relationships have been particularly well studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.