Mesenchymal stem cells (MSCs) are advanced therapy medicinal products used in cell therapy applications. Several MSC products have already advanced to phase III clinical testing and market approval. The manufacturing of MSCs must comply with good manufacturing practice (GMP) from phase I in Europe and phase II in the US, but there are several unique challenges when cells are the therapeutic product. Any GMP-compliant process for the production of MSCs must include the expansion of cells in vitro to achieve a sufficient therapeutic quantity while maintaining high cell quality and potency. The process must also allow the efficient harvest of anchorage-dependent cells and account for the influence of shear stress and other factors, especially during scale-up. Bioreactors are necessary to produce clinical batches of MSCs, and bioprocess development must therefore consider this specialized environment. For the last 10 years, we have investigated bioprocess development as a means to produce high-quality MSCs. More recently, we have also used bioreactors for the cocultivation of stem cells with other adult cells and for the production of MSC-derived extracellular vesicles. This review discusses the state of the art in bioprocess development for the GMP-compliant manufacture of human MSCs as products for stem cell therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.