The present paper takes advantage of the concept of dissipative measure-valued solutions to show the rigorous derivation of the Euler-Boussinesq (EB) system that has been successfully used in various meteorological models. In particular, we show that EB system can be obtained as a singular limit of the complete Euler system. We provide two types of result -firstly, we treat the case of well-prepared initial data for any sufficiently regular bounded domain. Secondly, we use the dispersive estimates for acoustic equation to tackle the case of the illprepared initial data on an unbounded exterior domain.
Decay estimates on solutions to the linearized compressible Navier–Stokes equation around time-periodic parallel flow are established. It is shown that if the Reynolds and Mach numbers are sufficiently small, solutions of the linearized problem decay in L2 norm as an (n - 1)-dimensional heat kernel. Furthermore, it is proved that the asymptotic leading part of solutions is given by solutions of an (n - 1)-dimensional linear heat equation with a convective term multiplied by time-periodic function.
The global in time existence of strong solutions to the compressible Navier-Stokes equation around time-periodic parallel flows in R n , n ≥ 2, is established under smallness conditions on Reynolds number, Mach number and initial perturbations. Furthermore, it is proved for n = 2 that the asymptotic leading part of solutions is given by a solution of one-dimensional viscous Burgers equation multiplied by timeperiodic function. In the case n ≥ 3 the asymptotic leading part of solutions is given by a solution of n − 1-dimensional heat equation with convective term multiplied by time-periodic function.
The linearized problem around a time-periodic parallel flow of the compressible Navier-Stokes equation in an infinite layer is investigated. By using the Floquet theory, spectral properties of the evolution operator associated with the linearized problem are studied in detail. The Floquet representation of low frequency part of the evolution operator, which plays an important role in the study of the nonlinear problem, is obtained.
We consider the complete Euler system describing the time evolution of a general inviscid compressible fluid. We introduce a new concept of measure-valued solution based on the total energy balance and entropy inequality for the physical entropy without any renormalization. This class of so-called dissipative measure-valued solutions is large enough to include the vanishing dissipation limits of the Navier-Stokes-Fourier system. Our main result states that any sequence of weak solutions to the Navier-Stokes-Fourier system with vanishing viscosity and heat conductivity coefficients generates a dissipative measure-valued solution of the Euler system under some physically grounded constitutive relations. Finally, we discuss the same asymptotic limit for the bi-velocity fluid model introduced by H.Brenner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.