The initial boundary value problem for the compressible Navier-Stokes equation is considered in an infinite layer of R 2 . It is proved that if the Reynolds and Mach numbers are sufficiently small, then strong solutions to the compressible Navier-Stokes equation around parallel flows exist globally in time for sufficiently small initial perturbations. The large time behavior of the solution is described by a solution of a one-dimensional viscous Burgers equation. The proof is given by a combination of spectral analysis of the linearized operator and a variant of the Matsumura-Nishida energy method.
Decay estimates on solutions to the linearized compressible Navier–Stokes equation around time-periodic parallel flow are established. It is shown that if the Reynolds and Mach numbers are sufficiently small, solutions of the linearized problem decay in L2 norm as an (n - 1)-dimensional heat kernel. Furthermore, it is proved that the asymptotic leading part of solutions is given by solutions of an (n - 1)-dimensional linear heat equation with a convective term multiplied by time-periodic function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.