Hierarchical porous carbon (HPC, DUT‐106) with tailored pore structure is synthesized using a versatile approach based on ZnO nanoparticles avoiding limitations present in conventional silica hard templating approaches. The benefit of the process presented here is the removal of all pore building components by pyrolysis of the ZnO/carbon composite without any need for either toxic/reactive gases or purification of the as‐prepared hierarchical porous carbon. The carbothermal reduction process is accompanied by an advantageous growing of distinctive micropores within the thin carbon walls. The resulting materials show not only high internal porosity (total pore volume up to 3.9 cm3 g−1) but also a large number of electrochemical reaction sites due to their remarkably high specific surface area (up to 3060 m2 g−1), which renders them particularly suitable for the application as sulfur host material. Applied in the lithium‐sulfur battery, the HPC/sulfur composite exhibits a capacity of >1200 mAh g−1‐sulfur (>750 mAh g−1 electrode) at a high sulfur loading of ≥ 3 mg cm−2 as well as outstanding rate capability. In fact, this impressive performance is achieved even using a low amount of electrolyte (6.8 μl mg−1
sulfur) allowing for further weight reduction and maintenance of high energy density on cell level.
The lithium sulfur battery system has been studied since the late 1970s and has seen renewed interest in recent years. However, even after three decades of intensive research, prolonged cycling can only be achieved when a large excess of electrolyte and lithium is used. Here, for the first time, a balanced and stable lithium sulfur full cell is demonstrated with silicon–carbon as well as all‐carbon anodes. More than 1000 cycles, a specific capacity up to 1470 mAh g−1
sulfur (720 mAh g−1
cathode), and a high coulombic efficiency of over 99% even with a low amount of electrolyte are achieved. The alternative anodes do not suffer from electrolyte depletion, which is found to be the main cause of cell failure when using metallic lithium anodes.
The use of elemental sulfur as a cathode active material is challenging. Besides the complex electrochemical conversion mechanism there are negative side effects added to the system by application of solvent-based cathode preparation, such as chemical incompatibility caused by solvent contamination, sulfur evaporation and morphology change during drying as well as limited active material loading. Therefore we present a solvent-free, highly versatile pressing/thermal treatment method for the fast and reproducible production of mechanically stable and highly flexible freestanding carbon-sulfur composite cathode foils with tunable sulfur loading, high in-plane conductivity and enhanced cycling stability. Utilizing an optimized cathode composition consisting of sulfur, a porous carbon host material and a carbon nanotube conducting agent, a stable capacity >740 mA h g À1 -S as well as high coulombic efficiency >96% was achieved over 160 cycles in our experiments at a moderate rate of C/10. Moreover, reversible cycling was possible up to a high rate of 1C due to the tuned carbon matrix properties as well as the highly conductive carbon nanotube percolation network. Thus not only a long-lasting electrical contact to insulating sulfur precipitates is provided but also the agglomeration of active material is restrained. To achieve even higher energy densities and improved corrosion resistance, the application of highly conductive freestanding cathode foils without a metallic current collector is a promising feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.