Magneto-optical permittivity tensor spectra of undoped InSb, n-doped and p-doped InSb crystals were determined using the terahertz time-domain spectroscopy (THz-TDS) and the Fourier transform far-infrared spectroscopy (far-FTIR). A Huge polar magneto-optical (MO) Kerr-effect (up to 20 degrees in rotation) and a simultaneous plasmonic behavior observed at low magnetic field (0.4 T) and room temperature are promising for terahertz nonreciprocal applications. We demonstrate the possibility of adjusting the the spectral rage with huge MO by increase in n-doping of InSb. Spectral response is modeled using generalized magneto-optical Drude-Lorentz theory, giving us precise values of free carrier mobility, density and effective mass consistent with electric Hall effect measurement.
We experimentally demonstrate surface plasmon resonance (SPR) in the terahertz range in InSb and InAs. The surface plasmon is excited on the interface between a thin polymer film and the semiconductor using a silicon prism in Otto configuration. The low effective mass of InSb and InAs permits tuning of the SPR by an external magnetic field in the transversal configuration. The data show a good agreement with a model. Strong excitation of the surface plasmon is present in both materials, with a shifting of resonance position by more than 100 GHz for the field of 0.25 T, to both higher and lower energies with opposite orientation of the magnetic field. Applicability of the terahertz SPR sensor is discussed, along with modeled design for the Kretschmann configuration.
Background:In this article, III-V semiconductors are proposed as materials for far-infrared and terahertz plasmonic applications. We suggest criteria to estimate appropriate spectral range for each material including tuning by fine doping and magnetic field. Methods: Several single-crystal wafer samples (n,p-doped GaAs, n-doped InP, and n,p-doped and undoped InSb) are characterized using reflectivity measurement and their optical properties are described using the Drude-Lorentz model, including magneto-optical anisotropy. Results: The optical parameters of III-V semiconductors are presented. Moreover, strong magnetic modulation of permittivity was demonstrated on the undoped InSb crystal wafer in the terahertz spectral range. Description of this effect is presented and the obtained parameters are compared with a Hall effect measurement. Conclusion: Analyzing the phonon/free carrier contribution to the permittivity of the samples shows their possible use as plasmonic materials; the surface plasmon properties of semiconductors in the THz range resemble those of noble metals in the visible and near infrared range and their properties are tunable by either doping or magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.