Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in EconStor may
AbstractUsing forecasts of the Brazilian real and the Mexican peso, we analyze the shape of the loss function of exchange-rate forecasters and the rationality of their forecasts. We find a substantial degree of cross-sectional heterogeneity with respect to the shape of the loss function. While some forecasters seem to forecasts under an asymmetric loss function, symmetry of the loss function cannot be rejected for other forecasters. An asymmetric loss function does not necessarily make survey data of exchange-rate forecasts look rational, and the loss function seems to depend not only on the forecast error.JEL classification: F31, D84
Based on the approach advanced by Elliott et al. (Rev. Ec. Studies. 72, 1197−1125, 2005, we found that the loss function of a sample of oil price forecasters is asymmetric in the forecast error. Our findings indicate that the loss oil price forecasters incurred when their forecasts exceeded the price of oil tended to be larger than the loss they incurred when their forecast fell short of the price of oil. Accounting for the asymmetry of the loss function does not necessarily make forecasts look rational.JEL classification: F31, D84
We analyze more than 20,000 forecasts of nine metal prices at four different forecast horizons. We document that forecasts are heterogeneous and report that anti-herding appears to be a source of this heterogeneity. Forecaster anti-herding reflects strategic interactions among forecasters that foster incentives to scatter forecasts around a consensus forecast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.