Growing worldwide efforts to replace (reduce) animal testing and to improve alternative in vitro tests which may be more efficient in terms of both time, cost and scientific validity include also genotoxicity/mutagenicity endpoints. The aim of the review article was to summarize currently available in vitro testing approaches in this field, their regulatory acceptance and recommended combinations for classification of chemicals. A study using the combination of Comet Assay performed on two cell lines and the Chromosomal Aberration test on human peripheral lymphocytes was performed with the aim to predict the genotoxic potential of selected paraben esters, serving as a model chemical group. Parabens are widely used in consumer products as preservatives and have been reported to exhibit inconclusive results in numerous genotoxicity studies. The Comet Assay identified Ethylparaben and Benzylparaben as potentially genotoxic. The Chromosomal Aberration test revealed weak genotoxic potential in case of Ethylparaben and positive genotoxicity in case of Butylparaben, Propylparaben and Isopropylparaben. The main reasons for variability seem to be limited water solubility of parabens, determining their bioavailability at the cellular level, and absence of metabolic activation in the Comet Assay. The results confirmed that the Comet Assay should serve as a screening test and should not be used as a stand-alone method for classification of genotoxicity. The weight of evidence approach in risk assessment should be supported with data generated with the use of human relevant in vitro methods based on cells / tissues of human origin.
Animal testing has been prohibited for the safety assessment of cosmetic ingredients or finished products. Thus, alternative non-animal methods, followed by confirmatory clinical studies on human volunteers, should be used as the sole legally acceptable approach within the EU. The safety assessment of cosmetic products requires the involvement of multiple scientific disciplines, including analytical chemistry and biomedicine, as well as in chemico, in vitro and in silico toxicology. Recent data suggest that fragrance components may exert multiple adverse biological effects, e.g. cytotoxicity, skin sensitisation, (photo)genotoxicity, mutagenicity, reprotoxicity and endocrine disruption. Therefore, a pilot study was conducted with selected samples of fragrance-based products, such as deodorant, eau de toilette and eau de parfum, with the aim of integrating results from a number of alternative non-animal methods suitable for the detection of the following toxicological endpoints: cytotoxicity (with 3T3 Balb/c fibroblasts); skin sensitisation potential ( in chemico method, DPRA); skin sensitisation potential (LuSens in vitro method, based on human keratinocytes); genotoxicity potential ( in vitro Comet assay with 3T3 Balb/c cells); and endocrine disruption ( in vitro YES/YAS assay). The presence of twenty-four specific known allergens in the products was determined by using GC-MS/MS. The strategies for estimation of the NOAEL of a mixture of allergens, which were proposed by the Scientific Committee on Consumer Products in their ‘Opinion on Tea tree oil’ document and by the Norwegian Food Safety Authority in their 'Risk Profile of Tea tree oil' report, were used as models for the NOAEL estimation of the mixtures of allergens that were identified in the individual samples tested in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.