Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (␥-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced ␥-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, ␥-H2AX foci were also induced in Ercc1 MMC-induced ␥-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1؊/؊ and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.Interstrand cross-links (ICLs) comprise a unique class of DNA lesions that have a potent biological effect. By definition, ICLs involve covalent modification of both strands of DNA. Therefore, these adducts prevent DNA strand separation and block DNA metabolism, such as transcription and replication (31). DNA-damaging agents that cause ICLs are extremely cytotoxic, and their utility as anticancer chemotherapeutics likely stems from their selective toxicity to proliferating cells. ICLs occur via a two-step reaction mechanism in which first a monoadduct involving one strand of DNA is formed (24). Although cross-linking agents induce a variety of DNA adducts, the relative cytotoxicity of each agent correlates with its ability to form ICLs (43, 44).The repair of DNA ICLs presents a unique challenge to cells. Since both strands of DNA are covalently modified, simple excision of the lesion followed by template-driven DNA resynthesis is precluded. In Escherichia coli, two solutions to this problem have been identified (reviewed in reference 19). In both these repair mechanisms, the ICL is excised from one strand. In error-free repair, an undamaged chromosome is then utilized as a template for gap-filling DNA polymerization (55). ICL repair also occurs in recombination-deficient E. coli, likely via translesional DNA polymerization of the second damaged strand (5). Similarly, genetic analysis of Saccharomyces cerevisiae (23) and mammalian DNA repair mutants (reviewed in reference 19) indicates the involvement of proteins from multiple DNA repair pathways in ICL repair: nucleotide excision repair (NER), homologous recombination, and postreplication...
Our results strongly suggest that the accumulation in ERCC1-mutant mice of endogenously generated DNA interstrand cross-links, which are normally repaired by ERCC1-dependent recombination repair, underlies both the early onset of cell cycle arrest and polyploidy in the liver and kidney. Thus, our work provides an insight into the molecular basis of ageing and highlights the role of ERCC1 and interstrand DNA cross-links.
Double-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype of mouse RAD54-/- (mRAD54-/-) cells. Consistent with a DSB repair defect, these cells are sensitive to ionizing radiation, mitomycin C, and methyl methanesulfonate, but not to ultraviolet light. Gene targeting experiments demonstrate that homologous recombination in mRAD54-/- cells is reduced compared to wild-type cells. These results imply that, besides DNA end-joining mediated by DNA-dependent protein kinase, homologous recombination contributes to the repair of DSBs in mammalian cells. Furthermore, we show that mRAD54-/- mice are viable and exhibit apparently normal V(D)J and immunoglobulin class-switch recombination. Thus, mRAD54 is not required for the recombination processes that generate functional immunoglobulin and T cell receptor genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.