Double-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype of mouse RAD54-/- (mRAD54-/-) cells. Consistent with a DSB repair defect, these cells are sensitive to ionizing radiation, mitomycin C, and methyl methanesulfonate, but not to ultraviolet light. Gene targeting experiments demonstrate that homologous recombination in mRAD54-/- cells is reduced compared to wild-type cells. These results imply that, besides DNA end-joining mediated by DNA-dependent protein kinase, homologous recombination contributes to the repair of DSBs in mammalian cells. Furthermore, we show that mRAD54-/- mice are viable and exhibit apparently normal V(D)J and immunoglobulin class-switch recombination. Thus, mRAD54 is not required for the recombination processes that generate functional immunoglobulin and T cell receptor genes.
Transcription‐coupled repair (TCR) is a universal sub‐pathway of the nucleotide excision repair (NER) system that is limited to the transcribed strand of active structural genes. It accomplishes the preferential elimination of transcription‐blocking DNA lesions and permits rapid resumption of the vital process of transcription. A defect in TCR is responsible for the rare hereditary disorder Cockayne syndrome (CS). Recently we found that mutations in the ERCC6 repair gene, encoding a putative helicase, underly the repair defect of CS complementation group B. Here we report the cloning and characterization of the Saccharomyces cerevisiae homolog of CSB/ERCC6, which we designate RAD26. A rad26 disruption mutant appears viable and grows normally, indicating that the gene does not have an essential function. In analogy with CS, preferential repair of UV‐induced cyclobutane pyrimidine dimers in the transcribed strand of the active RBP2 gene is severely impaired. Surprisingly, in contrast to the human CS mutant, yeast RAD26 disruption does not induce any UV‐, cisPt‐ or X‐ray sensitivity, explaining why it was not isolated as a mutant before. Recovery of growth after UV exposure was somewhat delayed in rad26. These findings suggest that TCR in lower eukaryotes is not very important for cell survival and that the global genome repair pathway of NER is the major determinant of cellular resistance to genotoxicity.
The highly conserved Saccharomyces cerevisiae Rad51 protein plays a central role in both mitotic and meiotic homologous DNA recombination. Seven members of the Rad51 family have been identified in vertebrate cells, including Rad51, Dmc1, and five Rad51-related proteins referred to as Rad51 paralogs, which share 20 to 30% sequence identity with Rad51. In chicken B lymphocyte DT40 cells, we generated a mutant with RAD51B/ RAD51L1, a member of the Rad51 family, knocked out. RAD51B؊/؊ cells are viable, although spontaneous chromosomal aberrations kill about 20% of the cells in each cell cycle. Rad51B deficiency impairs homologous recombinational repair (HRR), as measured by targeted integration, sister chromatid exchange, and intragenic recombination at the immunoglobulin locus. RAD51B؊/؊ cells are quite sensitive to the cross-linking agents cisplatin and mitomycin C and mildly sensitive to ␥-rays. The formation of damage-induced Rad51 nuclear foci is much reduced in RAD51B ؊/؊ cells, suggesting that Rad51B promotes the assembly of Rad51 nucleoprotein filaments during HRR. These findings show that Rad51B is important for repairing various types of DNA lesions and maintaining chromosome integrity. Double-strand DNA breaks (DSBs) occur during DNA replication and are produced by ionizing radiation. Since DSBs are so deleterious to the cell, it is not surprising that there are two DSB repair pathways: nonhomologous end joining (NHEJ) and homologous recombination repair (HRR). Repair of DSBs by HRR requires the presence of homologous duplex DNA elsewhere in the genome, i.e., either a homologous chromosome or, more likely, a sister chromatid. NHEJ simply acts to process and ligate broken ends without a requirement for extensive homology. These pathways are conserved from the yeast Saccharomyces cerevisiae to humans (5,8,9,19,49,53,64). While HRR is the primary mechanism of DSB repair in yeast, vertebrate cells use both the NHEJ and HRR pathways extensively (28,34,35,44). The analysis of radiosensitive yeast mutants has revealed a number of genes involved in HRR, which comprise the RAD52 epistasis group (reviewed in references 4, 29, and 51).Among the members of the RAD52 epistasis group, the structure and function of Rad51 have been conserved to a remarkable degree among all eukaryotes. Rad51 is structurally and functionally related to the Escherichia coli recombination protein RecA (reviewed in reference 32). The functional forms of both RecA and Rad51 are multimeric helical nucleoprotein filaments that form on single-stranded DNA ends produced at DSBs (41). These filaments are involved in the search for homologous sequence, DNA pairing, and strand exchange. Recombination intermediates produced in this way are then processed further in reactions that involve DNA synthesis, branch migration, resolution of Holliday junctions, and ligation (reviewed in reference 4). The conservation of the RAD52 epistasis group genes from yeast to vertebrate cells suggests that the basic mechanism of HRR is maintained during evolution. Howe...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.