BackgroundPopulation studies suggest that persons with diabetes are more sensitive to the effects of particulate matter (PM) air pollution. However, the biological mechanisms of a possible prothrombotic effect underlying this enhanced susceptibility remain largely unknown.ObjectiveWe hypothesized that exposure to PM causes prothrombotic changes in persons with diabetes, possibly via systemic inflammation.MethodsOur study included 137 nonsmoking adults with diabetes who were outpatients at the University Hospital Leuven. Recent exposure (2 hr before examination) to ambient PM was measured at the entrance of the hospital. Individual chronic exposure to PM was assessed by measuring the area occupied by carbon in airway macrophages obtained by sputum induction. Platelet function was measured ex vivo with the PFA-100 platelet function analyzer, which simulates a damaged blood vessel; we analyzed the function of platelets in primary hemostasis under high shear conditions. Total and differential blood leukocytes were counted.ResultsIndependent of antiplatelet medication, an interquartile range (IQR) increase of 39.2 μg/m3 in PM10 (PM with aerodynamic diameter ≤ 10 μm) concentration measured 2 hr before the clinical examination (recent exposure) was associated with a decrease of 21.1 sec [95% confidence interval (CI), − 35.3 to − 6.8] in the PFA-100 closure time (i.e., increased platelet activation) and an increase in blood leukocytes of 512 per microliter of blood (95% CI, 45.2–979). Each area increase of 0.25 μm2 (IQR) in carbon load of airway macrophages (chronic exposure) was associated with an increase of 687 leukocytes per microliter of blood (95% CI, 224–1,150).ConclusionsA relevant increase in recent PM exposure was associated with a change in platelet function toward a greater prothrombotic tendency. The magnitude of the change was about two-thirds (in the opposite direction) of the average effect of antiplatelet medication. Diabetic patients showed evidence of proinflammatory response to both recent and chronic exposure to PM air pollution.
Summary. Background: Epidemiological studies suggest an association between exposure to particulate matter (PM) in air pollution and the risk of venous thromboembolism (VTE). Objectives: To investigate the underlying pathophysiological pathways linking PM exposure and VTE. Patients and methods: We assessed potential associations between PM exposure and coagulation and inflammation parameters, including circulating microvesicles, in a group of 233 patients with diabetes. Results: The numbers of circulating blood platelet‐derived and annexin V‐binding microvesicles were inversely associated with the current levels of PM2.5 or PM10, measured on the day of sampling. Recent past exposure to PM10, up to 1 week prior to blood sampling, estimated at the patients’ residential addresses, was associated with elevated high‐sensitivity C‐reactive protein (CRP), leukocytes and fibrinogen, as well as with tissue factor (TF)‐dependent procoagulant changes in thrombin generation assays. When longer windows of past exposure were considered, up to 1 year preceding blood sampling, procoagulant changes were evident from the strongly increased numbers of red blood cell‐derived circulating microvesicles and annexin V‐binding microvesicles, but they no longer associated with TF. Past PM exposure was never associated with activated partial thromboplastin time (aPTT), prothrombin time (PT), or factor (F) VII, FVIII, FXII or D‐dimers. Residential distance to a major road was only marginally correlated with procoagulant changes in FVIII and thrombin generation. Conclusions: Increases in the number of microvesicles and in their procoagulant properties, rather than increases in coagulation factors per se, seem to contribute to the risk of VTE, developing during prolonged exposure to air pollutants.
First, a cohort of 103 JAK2 V617F-negative ET cases diagnosed between 1980 and 2013 at several Belgian hospitals was collected and analyzed for CALR and MPL mutations. We also collected a control cohort of 57 JAK2 V617F-positive ET patients diagnosed between 1987 and 2009 in the University Hospitals Leuven. The median follow-up of the whole cohort of 160 patients was 8 years (range, 1-34 years). Hematologic parameters (platelet counts, erythrocyte counts, leukocyte counts, hemoglobin, and hematocrit) at diagnosis were retrieved as was information on cardiovascular events and complications (arterial thrombosis, and venous events). During follow-up, progression to myelofibrosis, progression to acute myeloid leukemia, need for cytoreductive treatment, and presence of splenomegaly were recorded.
The enhancement of fibrinolysis constitutes a promising approach to treat thrombotic diseases. Activated thrombin activatable fibrinolysis inhibitor (TAFIa) attenuates fibrinolysis and is an attractive target to develop profibrinolytic drugs. TAFI can be activated by thrombin, thrombin/thrombomodulin, or plasmin, but the in vivo physiologic TAFI activator(s) are unknown. Here, we generated and characterized MA-TCK26D6, a monoclonal antibody raised against human TAFI, and examined its profibrinolytic properties in vitro and in vivo. In vitro, MA-TCK26D6 showed a strong profibrinolytic effect caused by inhibition of the plasmin-mediated TAFI activation. In vivo, MA-TCK26D6 significantly decreased fibrin deposition in the lungs of thromboembolism-induced mice. Moreover, in the presence of MA-TCK26D6, plasmin-␣ 2 -antiplasmin complexes in plasma of thromboembolism-induced mice were significantly increased compared with a control antibody, indicative of an acceleration of fibrinolysis through MA-TCK26D6. In this study, we show that plasmin is an important TAFI activator that hampers in vitro clot lysis. Furthermore, this is the first report on an anti-TAFI monoclonal antibody that demonstrates a strong profibrinolytic effect in a mouse thromboembolism model. (Blood. 2011;117(17): 4615-4622)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.