The anisotropy inherent to many planar organic molecules leads to a high sensitivity of various fundamental processes to the orientation of molecules within fi lms and at heterojunctions. Such processes include absorption, charge and exciton transport, energy levels, and charge transfer, all of which are critical to organic solar cell operation. Here,an in-depth study of bilayer cells consisting of a donor/acceptor interface between zinc phthalocyanine (ZnPc) and fullerene (C 60 ) is conducted and devices with the typically deposited standing up (edge-on) orientation are compared to those with ZnPc lying fl at (face-on). The face-on ZnPc-based device allows for an increase in all solar cell parameters, substantially increasing power conversion effi ciency from 1.5% to 2.8%. Spectrally resolved photocurrent measurements reveal a > 50% increase in ZnPc signal, from which only 12% is accounted for by the increase in absorption associated with the face-on orientation. The increase in internal quantum effi ciency is accounted for via an improved charge transfer. The results of this study indicate that proper consideration of the orientation between donor and acceptor needs to be taken in order to fully optimize the numerous processes required for photovoltaic energy conversion.
In this review, we focus on the field of organic photovoltaic cells based on small molecular weight materials. In particular, we discuss the physical processes that lead to photocurrent generation in organic solar cells, as well as the various architectures employed to optimize device performance. These include the donor-acceptor heterojunction for efficient exciton dissociation, the exciton blocking layer, the mixed or bulk heterojunction, and the stacked or tandem cell. We show how the choice of materials with known energy levels and absorption spectra affect device performance, particularly the open-circuit voltage and short-circuit current density. We also discuss the typical materials and growth techniques used to fabricate devices, as well as the issue of device stability, all of which are critical for the commercialization of low-cost and high-performance organic solar cells.
The properties of the dielectric strongly influence the performance of organic thin-film transistors. In this letter, we show experimental results that quantify the influence of the roughness of the dielectric on the mobility of pentacene transistors and discuss the cause of it. We consider the movement of charge carriers out of the "roughness valleys" or across those valleys at the dielectricsemiconductor interface as the limiting step for the roughness-dependent mobility in the transistor channel.
Transistor parameter extraction by the conventional transconductance method can lead to a mobility overestimate. Organic transistors undergoing major contact resistance experience a significant drop in mobility upon mild annealing. Before annealing, strong field-dependent contact resistance yields nonlinear transfer curves with locally high transconductances, resulting in a mobility overestimate. After annealing, a contact resistance below 200 Ω cm is achieved, which is stable over a wide V(G) range.
A main focus of research on organic semiconductors is their potential application in passive organic radio-frequency identification (RF-ID) tags. First prototypes working at 125 kHz have been shown by industrial research groups. However, to be commercially viable, the organic RF-ID tag would need to be compatible with the base-carrier frequency of 13.56 MHz (ref. 2). High-frequency operation has been out of reach for devices based on organic semiconducting material, because of the intrinsically low mobility of those materials. Here, we report on a rectifier based on a pentacene diode that can rectify an incoming a.c. signal at 50 MHz. At 14 MHz, a rectified voltage of 11 V for an a.c. voltage with a peak-to-peak amplitude of 36 V has been achieved. On the basis of those results, we estimate the frequency limits of an organic diode showing that even the ultra-high-frequency band at around 800 MHz is within reach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.