In order to increase the power conversion efficiency of organic solar cells, their absorption spectrum should be broadened while maintaining efficient exciton harvesting. This requires the use of multiple complementary absorbers, usually incorporated in tandem cells or in cascaded exciton-dissociating heterojunctions. Here we present a simple three-layer architecture comprising two non-fullerene acceptors and a donor, in which an energy-relay cascade enables an efficient two-step exciton dissociation process. Excitons generated in the remote wide-bandgap acceptor are transferred by long-range Förster energy transfer to the smaller-bandgap acceptor, and subsequently dissociate at the donor interface. The photocurrent originates from all three complementary absorbing materials, resulting in a quantum efficiency above 75% between 400 and 720 nm. With an open-circuit voltage close to 1 V, this leads to a remarkable power conversion efficiency of 8.4%. These results confirm that multilayer cascade structures are a promising alternative to conventional donor-fullerene organic solar cells.
The anisotropy inherent to many planar organic molecules leads to a high sensitivity of various fundamental processes to the orientation of molecules within fi lms and at heterojunctions. Such processes include absorption, charge and exciton transport, energy levels, and charge transfer, all of which are critical to organic solar cell operation. Here,an in-depth study of bilayer cells consisting of a donor/acceptor interface between zinc phthalocyanine (ZnPc) and fullerene (C 60 ) is conducted and devices with the typically deposited standing up (edge-on) orientation are compared to those with ZnPc lying fl at (face-on). The face-on ZnPc-based device allows for an increase in all solar cell parameters, substantially increasing power conversion effi ciency from 1.5% to 2.8%. Spectrally resolved photocurrent measurements reveal a > 50% increase in ZnPc signal, from which only 12% is accounted for by the increase in absorption associated with the face-on orientation. The increase in internal quantum effi ciency is accounted for via an improved charge transfer. The results of this study indicate that proper consideration of the orientation between donor and acceptor needs to be taken in order to fully optimize the numerous processes required for photovoltaic energy conversion.
Charge transfer (CT) states at a donor-acceptor heterojunction have a key role in the charge photogeneration process of organic solar cells, however, the mechanism by which these states dissociate efficiently into free carriers remains unclear. Here we explore the nature of these states in small molecule-fullerene bulk heterojunction photovoltaics with varying fullerene fraction and find that the CT energy scales with dielectric constant at high fullerene loading but that there is a threshold C 60 crystallite size of B4 nm below which the spatial extent of these states is reduced. Electroabsorption measurements indicate an increase in CT polarizability when C 60 crystallite size exceeds this threshold, and that this change is correlated with increased charge separation yield supported by CT photoluminescence transients. These results support a model of charge separation via delocalized CT states independent of excess heterojunction offset driving energy and indicate that local fullerene crystallinity is critical to the charge separation process.
Organic semiconductors are characterized by localized states whose energies are predominantly determined by electrostatic interactions with their immediate molecular environment. As a result, the details of the energy landscape at heterojunctions between different organic semiconductors cannot simply be deduced from those of the individual semiconductors, and they have so far remained largely unexplored. Here, microelectrostatic computations are performed to clarify the nature of the electronic structure and geminate pair energetics at the pentacene/C60 interface, as archetype for an interface between a donor molecule and a fullerene electron acceptor. The size and orientation of the molecular quadrupole moments, determined by material choice, crystal orientation, and thermodynamic growth parameters of the semiconductors, dominate the interface energetics. Not only do quadrupoles produce direct electrostatic interactions with charge carriers, but, in addition, the discontinuity of the quadrupole field at the interface induces permanent interface dipoles. That discontinuity is particularly striking for an interface with C60 molecules, which by virtue of their symmetry possess no quadrupole. Consequently, at a pentacene/C60 interface, both the vacuum‐level shift and geminate pair dissociation critically depend on the orientation of the pentacene π‐system relative to the adjacent C60.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.