Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we have designed and built a composable, reconfigurable fabric to accelerate portions of large-scale software services. Each instantiation of the fabric consists of a 6x8 2-D torus of high-end Stratix V FPGAs embedded into a half-rack of 48 machines. One FPGA is placed into each server, accessible through PCIe, and wired directly to other FPGAs with pairs of 10 Gb SAS cables.In this paper, we describe a medium-scale deployment of this fabric on a bed of 1,632 servers, and measure its efficacy in accelerating the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system when ranking candidate documents. Under high load, the largescale reconfigurable fabric improves the ranking throughput of each server by a factor of 95% for a fixed latency distributionor, while maintaining equivalent throughput, reduces the tail latency by 29%.
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers.
Indigenous education in Australia has been the subject of ongoing policy focus and repeated official inquiry as the nation grapples with trying to achieve equity for these students. Perspectives from recent developments in the USA and Canada highlight the similarity of challenges. The article employs a multidisciplinary approach to social theory to examine the underlying causes of the creation of a plateau effect of progress in this area. The article argues that the lack of progress is a reflection of a complex set of underlying factors, many of which are under acknowledged in educational debates. Arising from this examination is the need for a new governance model for Indigenous education involving both horizontal and vertical policy-making structures.
Datacenter workloads demand high computational capabilities, flexibility, power efficiency, and low cost. It is challenging to improve all of these factors simultaneously. To advance datacenter capabilities beyond what commodity server designs can provide, we designed and built a composable, reconfigurable hardware fabric based on field programmable gate arrays (FPGA). Each server in the fabric contains one FPGA, and all FPGAs within a 48-server rack are interconnected over a low-latency, high-bandwidth network. We describe a medium-scale deployment of this fabric on a bed of 1632 servers, and measure its effectiveness in accelerating the ranking component of the Bing web search engine. We describe the requirements and architecture of the system, detail the critical engineering challenges and solutions needed to make the system robust in the presence of failures, and measure the performance, power, and resilience of the system. Under high load, the large-scale reconfigurable fabric improves the ranking throughput of each server by 95% at a desirable latency distribution or reduces tail latency by 29% at a fixed throughput. In other words, the reconfigurable fabric enables the same throughput using only half the number of servers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.