An open source tool named SimpleTree, capable of modelling highly accurate cylindrical tree models from terrestrial laser scan point clouds, is presented and evaluated. All important functionalities, accessible in the software via buttons and dialogues, are described including the explanation of all necessary input parameters. The method is validated utilizing 101 point clouds of six different tree species, in the main evergreen and coniferous trees. All scanned trees have been destructively harvested to get accurate estimates of above ground biomass with which we assess the accuracy of the SimpleTree-reconstructed cylinder models. The trees were grouped into four data sets and for each one a Concordance Correlation Coefficient of at least 0. 92 (0.92, 0.97, 0.92, 0.94) and an total relative error at most ∼ 8 % (2.42%, 3.59%, -4.59%, 8.27%) was achieved in the comparison of the model results to the ground truth data. A global statistical improvement of derived cylinder radii is presented as well as an efficient optimization approach to Forests 2015, 6 4246 automatically improve user given input parameters. An additional check of the SimpleTree results is presented via comparison to the results of trees reconstructed using an alternative, published method.
This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree's direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.
This paper presents a method for predicting the above ground leafless biomass of trees in a non destructive way. We utilize terrestrial laserscan data to predict the volume of the trees. Combining volume estimates with density measurements leads to biomass predictions. Thirty-six trees of three different species are analyzed: evergreen coniferous Pinus massoniana, evergreen broadleaved Erythrophleum fordii and leafless deciduous Quercus petraea. All scans include a large number of noise points; denoising procedures are presented in detail. Density values are considered to be a minor source of error in the method if applied to stem segments, as comparison to ground truth data reveals that prediction errors for the tree volumes are in accordance with biomass prediction errors. While tree compartments with a diameter larger than 10 cm can be modeled accurately, smaller ones, especially twigs with a diameter smaller than 4 cm, are often largely overestimated. Better prediction results could be achieved by applying a biomass expansion factor to the biomass of compartments with a diameter larger than 10 cm. With this second method the average prediction error for Q. petraea could be reduced from 33.84% overestimation to 3.56%. E. fordii results could also be improved reducing the average prediction error from −17.24% to −7.30%. Only P. massoniana results had a low prediction error of 2.75% utilizing the total TLS-estimated volume, which was not improved by the biomass expansion method (3.82%).
Improving the global monitoring of above‐ground biomass (AGB) is crucial for forest management to be effective in climate mitigation. In the last decade, methods have been developed for estimating AGB from terrestrial laser scanning (TLS) data. TLS‐derived AGB estimates can address current uncertainties in allometric and Earth observation (EO) methods that quantify AGB. We assembled a global dataset of TLS scanned and consecutively destructively measured trees from a variety of forest conditions and reconstruction pipelines. The dataset comprised 391 trees from 111 species with stem diameter ranging 8.5 to 180.3 cm and AGB ranging 13.5–43,950 kg. TLS‐derived AGB closely agreed with destructive values (bias <1%, concordance correlation coefficient of 98%). However, we identified below‐average performances for smaller trees (<1,000 kg) and conifers. In every individual study, TLS estimates of AGB were less biased and more accurate than those from allometric scaling models (ASMs), especially for larger trees (>1,000 kg). More effort should go to further understanding and constraining several TLS error sources. We currently lack an objective method of evaluating point cloud quality for tree volume reconstruction, hindering the development of reconstruction algorithms and presenting a bottleneck for tracking down the error sources identified in our synthesis. Since quantifying AGB with TLS requires only a fraction of the efforts as compared to destructive harvesting, TLS‐calibrated ASMs can become a powerful tool in AGB upscaling. TLS will be critical for calibrating/validating scheduled and launched remote sensing initiatives aiming at global AGB mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.