Neospora caninum, Toxoplasma gondii and Eimeria bovis are coccidian parasites of veterinary importance. Tachyzoites of N. caninum and T. gondii and sporozoites of E. bovis are able to invade and replicate in endothelial cells in vivo and in vitro. As it holds true for all eukaryotic cells, the survival of parasitized host cells and the parasites themselves should be dependent on ion balances, especially on extra- and intracellular calcium concentrations. Addition of the calcium ionophore A23187 reliably did release merozoites from mature N. caninum and T. gondii meronts grown in cultured primary bovine umbilical vein endothelial cells (BUVEC). Extent and time course of merozoite release depended on both, maturity of the meronts and concentration of the calcium ionophore. Attempts, however, to achieve synchronous release of merozoites from E. bovis first generation meronts by ionophore treatment failed, suggesting a different biological behaviour of this parasite. According to microscopical observations, the quite variable time of E. bovis macromeront maturation and a hampered merozoite exit owing to dense parasite-induced cytoskeleton elements surrounding the meront may be a reason for the lack of inducible synchronous release.
The first merogony of Eimeria bovis takes place in lymphatic endothelial cells of the ileum, resulting in the formation of macromeronts up to 250 microm. In this study, we investigated the host cell cytoskeleton (actin filaments, microtubules, spectrin, vimentin intermediate filaments) associated with parasitic development in vitro by confocal laser scanning microscopy (CLSM) using primary bovine umbilical vein endothelial cells (BUVEC) and bovine spleen lymphatic endothelial cells (BSLEC) as host cells. No prominent changes in the host cell cytoskeleton were detected 1-3 days after E. bovis sporozoite invasion. With ongoing meront maturation a significant increase in microtubules and actin filaments close to the parasitophorous vacuole (PV) was found. Mature macromeronts within the PV were completely enclosed by these cytoskeletal elements. Our findings suggest, that in order to guarantee the survival of the host cell on the enlargement of macromeronts, E. bovis needs not only to augment but also to rearrange its cytoskeletal system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.