Most patients suffering from breast carcinoma do not die due to the primary tumor but from the development of metastases. Active migration of cancer cells is a prerequisite for development of these metastases. We used time-lapse videomicroscopy and computer-assisted cell tracking of MDA-MB-468 human breast carcinoma cells, which were incorporated into a three-dimensional collagen matrix, in order to analyze the migratory activity of these cells in response to different neurotransmitters. Our results show that met-enkephalin, substance P, bombesin, dopamine, and norepinephrine have a stimulatory effect on the migration of the breast cancer cells; moreover, these cells show positive chemotaxis towards norepinephrine as was analyzed by the directionality and persistence on a single-cell basis. Gamma-aminobutyric acid (GABA) however has an inhibitory effect. Endorphin and leu-enkephalin, as well as histamin and acetylcholine, had no influence on the migratory activity of the cells. In summary, we provide evidence for a strong regulatory involvement of neurotransmitters in the regulation of breast cancer cell migration, which might provide the basis for the use of the pharmacological agonists and antagonists for the chemopreventive inhibition of metastasis development.
Cell migration is of paramount importance in physiological processes such as immune surveillance, but also in the pathological processes of tumor cell migration and metastasis development. The factors that regulate this tumor cell migration, most prominently neurotransmitters, have thus been the focus of intense investigation. While the majority of neurotransmitters have a stimulatory effect on cell migration, we herein report the inhibitory effect of the endogenous substance anandamide on both tumor cell and lymphocyte migration. Using a collagen-based three-dimensional migration assay and time-lapse videomicroscopy, we have observed that the anandamide-mediated signals for CD8+ T lymphocytes and SW 480 colon carcinoma cells are each mediated by distinct cannabinoid receptors (CB-Rs). Using the specific agonist docosatetraenoylethanolamide (DEA), we have observed that the norepinephrine-induced migration of colon carcinoma cells is inhibited by the CB1-R. The SDF-1-induced migration of CD8+ T lymphocytes was, however, inhibited via the CB2-R, as shown by using the specific agonist JWH 133. Therefore, specific inhibition of tumor cell migration via CB1-R engagement might be a selective tool to prevent metastasis formation without depreciatory effects on the immune system of cancer patients.
Neurotransmitters are signal substances that have traditionally been regarded as mere mediators of signal states between cells in the nervous system. Whereas the mechanisms of this "classic" neurotransmitter regulation are well understood, only recently has new evidence come to light elucidating the modulatory role of neurotransmitters in immune function, and in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is, among other things, of primary importance for an anti-tumor immune response, whereas the migration of tumor cells is a prerequisite for invasion and the development of metastases. We here clarify and consolidate the latest tumor biological findings on the role of these neurotransmitters, which bind to serpentine receptors, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of neurotransmitters in the regulation of migration of both leukocytes and tumor cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.