We report the design, fabrication and experimental investigation of a spectrally wide-band terahertz spatial light modulator (THz-SLM) based on an array of 768 actuatable mirrors with each having a length of 220 μm and a width of 100 μm. A mirror length of several hundred micrometers is required to reduce diffraction from individual mirrors at terahertz frequencies and to increase the pixel-to-pixel modulation contrast of the THz-SLM. By means of spatially selective actuation, we used the mirror array as reconfigurable grating to spatially modulate terahertz waves in a frequency range from 0.97 THz to 2.28 THz. Over the entire frequency band, the modulation contrast was higher than 50% with a peak modulation contrast of 87% at 1.38 THz. For spatial light modulation, almost arbitrary spatial pixel sizes can be realized by grouping of mirrors that are collectively switched as a pixel. For fabrication of the actuatable mirrors, we exploited the intrinsic residual stress in chrome-copper-chrome multi-layers that forces the mirrors into an upstanding position at an inclination angle of 35°. By applying a bias voltage of 37 V, the mirrors were pulled down to the substrate. By hysteretic switching, we were able to spatially modulate terahertz radiation at arbitrary pixel modulation patterns.
Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.
Radar cross section reducing (RCSR) metasurfaces or coding metasurfaces were primarily designed for normally incident radiation in the past. It is evident that the performance of coding metasurfaces for RCSR can be significantly improved by additional backscattering reduction of obliquely incident radiation, which requires a valid analytic conception tool. Here, we derive an analytic current density distribution model for the calculation of the backscatter far-field of obliquely incident radiation on a coding metasurface for RCSR. For demonstration, we devise and fabricate a metasurface for a working frequency of 10.66 GHz and obtain good agreement between the measured, simulated, and analytically calculated backscatter far-fields. The metasurface significantly reduces backscattering for incidence angles between −40 • and 40 • in a spectral working range of approximately 1 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.