Biocoal pellets were gasified in an updraft high-temperature agent gasification (HTAG) unit with preheated air at 900 °C to study the performance of the air gasification of hydrothermal carbonized biomass. In comparison to raw biomass, hydrothermal carbonization increased the carbon content from 46 to 66% and decreased the oxygen content from 38 to 16%. As a result, the heating value of biomass on a dry basis was increased from 19 to 29 MJ/kg after hydrothermal carbonization. Thermogravimetric analysis (TGA) of biocoal featured early decomposition of hemicellulose and a shoulder attached to the cellulose peak corresponding to lignin decomposition. Char gasification demonstrated a peak near conversion of 0.2. Syngas with 7.9 MJ Nm −3 lower heating value (LHV) was obtained from gasification experiments performed in the pilot-scale gasifier. The maximum cold gas efficiency was 80% at the lowest equivalence ratio (ER) and also resulted in high-purity syngas. The LHV and cold gas efficiency were higher than that of the previously studied unpretreated biomass pellets. The fuel conversion positively correlated with the fuel residence time in the bed, and almost 99% conversion could be achieved for a residence time of 2 h. The superficial velocity (or hearth load) and specific gasification rate were higher than the reported values of updraft gasifiers because of the high-temperature operation and specific fuel used.
The paper presents preliminary experimental analyses of combustion processes for crude oil. The research is started from investigation of combustion of gas in a strong swirl flow as is intended to be an introductory step in studying the mechanism of stability and emission of pollutants in combustion of crude oil occurring in gas turbines. The areas of recirculation and pollutant emission in a strong swirl flow have been studied for the following three cases: - isothermal flow without combustion; - combustion of gas mixture with CH4 and N2 differently composed; - combustion of crude oil. All experiments are performed in the atmospheric test rig of a top-mounted combustor, briefly described in the paper. The velocity field in the combustion chamber is measured by laser doppler anemometry. The measured profiles of temperature and molar fraction of NOx, CO, CO2, O2 are discussed for natural gas and crude oil. Depending on the degree of the swirl of the flow and on the temperature of entering air, the distribution of molar fraction of most important chemical species has been established. This allows for better understanding the process of combustion in a strong swirl flow. The established characteristics of the flame blow-out make it possible to calculate the limits of capacity power generation available from a given size of a gas burner. For the burner geometry, similar to that with the know characteristic of gas combustion, the parameters for CO and NOx have been established for crude oil. Also, characteristics have been found for a specially designed oil nozzle with a large spray angle — sufficiently large for the optimum supply of fuel into the area of strong swirl flow with combustion established on the basis of the analysis of the burning of gas. It has been found that in cases of combustion crude oil a relatively small increase of the temperature of air supplied for combustion results in a significant drop in CO emission what has an impact on lower NOx emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.