Co-combustion of biomass-based fuels and fossil fuels in power plant boilers, utility boilers, and process furnaces is a widely acknowledged means of efficient heat and power production, offering higher power production than comparable systems with sole biomass combustion. This, in combination with CO2 and other greenhouse gases abatement and low specific cost of system retrofit to co-combustion, counts among the tangible advantages of co-combustion application. Technical and operational issues regarding the accelerated fouling, slagging, and corrosion risk, as well as optimal combustion air distribution impact on produced greenhouse gases emissions and ash properties, belong to intensely researched topics nowadays in parallel with the combustion aggregates design optimization, the advanced feed pretreatment techniques, and the co-combustion life cycle assessment. This review addresses the said topics in a systematic manner, starting with feed availability, its pretreatment, fuel properties and combustor types, followed by operational issues, greenhouse gases, and other harmful emissions trends, as well as ash properties and utilization. The body of relevant literature sources is table-wise classified according to numerous criteria pertaining to individual paper sections, providing a concise and complex insight into the research methods, analyzed systems, and obtained results. Recent advances achieved in individual studies and the discovered synergies between co-combusted fuels types and their shares in blended fuel are summed up and discussed. Actual research challenges and prospects are briefly touched on as well.
This study of process heat source change in industrial conditions has been developed to aid engineers and energy managers with working towards sustainable production. It allows for an objective assessment from energetic, environmental, and economic points of view, thereby filling the gap in the systematic approach to this problem. This novel site-wide approach substantially broadens the traditional approach, which is based mostly on “cheaper” and “cleaner” process heat sources’ application and only takes into account local changes, while neglecting the synergic effect on the whole facility’s operations. The mathematical model employed assesses the performance change of all the affected refinery parts. The four proposed aromatic splitting process layouts, serving as a case study, indicate feasible heat and condensate conservation possibilities. Although the estimated investment needed for the most viable layout is over €4.5 million, its implementation could generate benefits of €0.5–1.5 million/year, depending on the fuel and energy prices as well as on the carbon dioxide emissions cost. Its economics is most sensitive to the steam to refinery fuel gas cost ratio, as a 10% change alters the resulting benefit by more than €0.5 million. The pollutant emissions generated in the external power production process contribute significantly to the total emissions balance.
The performance of an adsorptive heat-moisture regenerator based on a silica gel–sodium sulphate composite adsorbent was studied. The correlation between the adsorbent composition and structural characteristics of the laboratory-scale device was investigated. An algorithm for the calculation of the efficiency factors of the adsorptive regenerator was further developed. The suggested algorithm calculates the operational parameters, including the temperatures, humidities and volumetric flows of internal and external air, and estimates the regenerator’s performance via temperature and moisture efficiency factors, total adsorption and time needed to achieve maximum adsorption, air pressure loss and fan power input. The validity of the calculation results obtained using the proposed algorithm was confirmed experimentally. Temperature efficiency factor, air pressure loss and fan power consumption are crucial parameters for the estimation of the optimal operating regime of an adsorptive heat-moisture regenerator. The correlation between meteorological conditions and efficiency factors was assessed and applied in a simulation of residential house-scale air conditioning unit operation. Maximal values of temperature efficiency factor were found at internal and external air temperatures of 15 to 20 °C and −5 to 0 °C, respectively. Moisture efficiency factors were observed to reach their maximum at the absolute humidities of external and internal air of 4.0 to 5.0 g/m3 and 2.75 to 3.0 g/m3, respectively. The fan power consumption of the adsorptive heat-moisture regenerator was found to be comparable to or even lower than that of commercial air conditioning units used in comparably voluminous interiors.
The paper presents the results of the optimisation of burner nozzle diameters during the combustion of natural gas under the conditions of increasing oxygen concentrations in the oxidizer in aluminium melting processes in drum rotary furnaces. The optimisation of outlet nozzle diameters was performed employing the method of experimental measurements, the results of which can be used for aluminium melting in hearth furnaces. The measurements were carried out using an experimental upstream burner with 13.5 kW input power. The monitored oxygen concentrations in the oxidizer ranged from 21% to 50%. The measurements were performed and evaluated in two variations of the burner configuration (geometry). In the first study, the impact of the enriched oxidizer on the melting of aluminium ingots was evaluated with the defined diameter of the air nozzle, which resulted in a reduction of the aluminium charge melting time by 50% at 45.16% oxygen concentration in the oxidizer, thus achieving savings in the consumption of fuel used for melting. In the second study, the diameter was optimised depending on the combustion rate of the natural gas and oxidizer mixture. The optimisation of the nozzle parameters resulted in the reduction of the charge melting time by 23.66%, while the same 25% enriched oxidizer was used. With the rise of the enrichment level to 35%, further reduction by approximately 12% was observed. The measurement results prove considerable influence of the parameter (geometry) optimisation of the outlet nozzles and oxidizer enrichment. Appropriately selected parameters of the burner can contribute to achieving comparable results at a lower enrichment of the oxidizer. The obtained results demonstrate the intensification of the heat transfer in the current thermal aggregates. The research conclusions confirm that oxygen-enhanced combustion and modification of existing burners reduces the specific energy consumption on the process and reduces CO2 emissions.
The paper deals with the study of the influence of various factors, which have an impact on emissions such as NOx, CO, which have been verified by measurements. Biomass in the form of wood chips as fuel of different moisture content from 9% to 25% has been tested at various boiler outputs. The presented work also defines the mathematical dependencies of NOx and CO emission generation by using regression analysis from measured data after biomass combustion in low-power boilers. The paper also describes a mathematical model of biomass combustion. The mathematical model was created to verify the measured data and prediction of emission generation in the process of biomass combustion. This model consists of combustion of stoichiometry, calculation of combustion temperatures, obtained regression equations of NOx and CO. At the end of this paper, the obtained results are compared with the calculated models as well as the results of the defined dependencies from the regression analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.