Since the identification of the alternative angiotensin converting enzyme (ACE)2/Ang-(1-7)/Mas receptor axis, renin-angiotensin system (RAS) is a new complex target for a pharmacological intervention. We investigated the expression of RAS components in the heart and kidney during the development of hypertension and its perinatal treatment with losartan in young spontaneously hypertensive rats (SHR). Expressions of RAS genes were studied by the RT-PCR in the left ventricle and kidney of rats: normotensive Wistar, untreated SHR, SHR treated with losartan since perinatal period until week 9 of age (20 mg/kg/day) and SHR treated with losartan only until week 4 of age and discontinued until week 9. In the hypertrophied left ventricle of SHR, cardiac expressions of Ace and Mas were decreased while those of AT1 receptor (Agtr1a) and Ace2 were unchanged. Continuous losartan administration reduced LV weight (0.43 ± 0.02; P < 0.05 versus SHR) but did not influence altered cardiac RAS expression. Increased blood pressure in SHR (149 ± 2 in SHR versus 109 ± 2 mmHg in Wistar; P < 0.05) was associated with a lower renal expressions of renin, Agtr1a and Mas and with an increase in ACE2. Continuous losartan administration lowered blood pressure to control levels (105 ± 3 mmHg; P < 0.05 versus SHR), however, only renal renin and ACE2 were significantly up-regulated (for both P < 0.05 versus SHR). Conclusively, prevention of hypertension and LV hypertrophy development by losartan was unrelated to cardiac or renal expression of Mas. Increased renal Ace2, and its further increase by losartan suggests the influence of locally generated Ang-(1-7) in organ response to the developing hypertension in SHRs.
AimsThe role of nitric oxide (NO) in heart failure (HF) is complex and remains controversial. We tested the hypothesis that the role of NO in isolated atria and cardiomyocytes is altered in isoproterenol-induced HF. Methods and resultsRats received isoproterenol (ISO, 5 mg/kg/day, intraperitoneally) or vehicle for 1 week. Haemodynamic parameters were obtained by left ventricular catheterization. Effects of NOS inhibition on isolated atria and on electrically paced left ventricular myocytes were determined. Additionally, expressions of nitric oxide synthases and their allosteric modulators hsp90, caveolin-1, and caveolin-3 proteins in the left ventricles were measured. ISO increased left ventricular mass by 33% and decreased indices of left ventricular systolic and diastolic function dp/dt min and dp/dt max (both P , 0.05). Isolated atria from HF rats had a lower spontaneous beating rate (P , 0.05). NOS inhibition by L-NAME increased basal frequency and attenuated the positive chronotropic effect of beta-adrenergic stimulation in the HF group (P , 0.05). Ventricular myocytes from failing hearts had impaired cell shortening. L-NAME decreased contractility of control, but not failing myocytes. Left ventricular expressions of eNOS, hsp90, iNOS, but not nNOS or caveolins, were increased. ConclusionDespite the increased capacity for NO synthesis in isoproterenol-induced HF, NO does not sustain contractility of failing myocytes. NO may contribute to the decreased basal heart rate and it may accelerate beta-adrenergic stimulation of chronotropy.--
Caffeine is a most widely consumed physiological stimulant worldwide, which is consumed via natural sources, such as coffee and tea, and now marketed sources such as energy drinks and other dietary supplements. This wide use has led to concerns regarding the safety of caffeine and its proposed beneficial role in alertness, performance and energy expenditure and side effects in the cardiovascular system. The question remains "Which dose is safe?", as the population does not appear to adhere to the strict guidelines listed on caffeine consumption. Studies in humans and animal models yield controversial results, which can be explained by population, type and dose of caffeine and low statistical power. This review will focus on comprehensive and critical review of the current literature and provide an avenue for further study.
The duration of the QT interval as measured by 12-lead electrocardiography is a measure of myocardial repolarization and is widely used to describe cardiac abnormalities, to determine the presence of cardiac toxicity and to evaluate drug safety. In hypertension, the QT interval is a predictor of the risk of both coronary events and cardiovascular death, after adjusting for the effects of additional risk factors. The mechanism of QT interval prolongation is multifactorial and includes cardiomyocyte hypertrophy and increased left ventricular mass, with accompanying changes in left ventricular transmural dispersion of repolarization, as well as changes in the tone of the autonomic nervous system of some patients with hypertension and mechano-electrical feedback, although this mechanism is less likely. Antihypertensive drugs vary in their effect on QT interval duration. The mechanisms underlying their effect depend on changes in left ventricular mass and autonomic nervous system tone, as well as changes in the activity of cardiac ion channels. Although blood pressure reduction is the primary goal of antihypertensive drug therapy and although the choice of antihypertensive drug treatment regimens varies among different individuals, the data regarding the disparate effects of antihypertensive drugs on the duration of the QT interval warrant consideration when implementing long-term pharmacotherapy for hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.