Despite the importance of drug release testing of parenteral depot formulations, the current in vitro methods still require ameliorations in biorelevance. We have investigated here the use of muscle tissue components to better mimic the intramuscular administration. For convenient handling, muscle tissue was used in form of a freeze-dried powder, and a reproducible process of incorporation of tested microspheres to an assembly of muscle tissue of standardized dimensions was successfully developed. Microspheres were prepared from various grades of poly(lactic-co-glycolic acid) (PLGA) or ethyl cellulose, entrapping flurbiprofen, lidocaine, or risperidone. The deposition of microspheres in the muscle tissue or addition of only isolated lipids into the medium accelerated the release rate of all model drugs from microspheres prepared from ester-terminated PLGA grades and ethyl cellulose, however, not from the acid-terminated PLGA grades. The addition of lipids into the release medium increased the solubility of all model drugs; nonetheless, also interactions of the lipids with the polymer matrix (ad- and absorption) might be responsible for the faster drug release. As the in vivo drug release from implants is also often faster than in simple buffers in vitro, these findings suggest that interactions with the tissue lipids may play an important role in these still unexplained observations.
Concomitant intake of alcoholic beverages with sustained-release oral formulations may potentially lead to dose dumping. Alcohol-resistance testing is currently a requirement for the manufacturers by regulatory authorities. Silk fibroin produced by silkworm Bombyx mori is suggested in this work as a potential alternative to a narrow spectrum of alcohol-resistant excipients. Oxycodone HCl, tramadol HCl, and flurbiprofen were selected as model drugs and formulated with regenerated silk fibroin either in the form of an amorphous solid dispersion or as a physical mixture and compressed into tablets. Preliminary compactability and tampering-resistance studies were performed. The ethanolresistance was tested in media containing 5%, 10%, 20%, or 40% (v/v) ethanol concentration. Drug release profiles were compared using f 2 similarity factor. Good mechanical tampering-resistance (tensile strength of 14.6 MPa at 400 MPa compression pressure) was obtained for tablets compressed from physical mixture. Tablets compressed from amorphous solid dispersion had lower tensile strength (2.2 MPa) but showed chemical tampering-resistance to extraction by pure ethanol (7.1% of oxycodone HCl after 24 h). Drug release is controlled predominantly by swelling and diffusion. With an increasing ethanol concentration in release medium, the tablets swelled less, resulting in a slower release. This trend was similar for all tested drugs and for both physical states formulations. No dose dumping occurred in the presence of ethanol; therefore, silk fibroin could be considered as an alternative alcohol-resistant excipient for sustained release application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.