The first laser spectroscopic determination of the change in the nuclear charge radius for a five-electron system is reported. This is achieved by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift in the 2s 2 2p 2 P 1/2 → 2s 2 3s 2 S 1/2 ground state transition in boron atoms. Accuracy is increased by orders of magnitude for the stable isotopes 10,11 B and the results are used to extract their difference in the mean-square charge radius r 2 c 11 − r 2 c 10 = −0.49 (12) fm 2 . The result is qualitatively explained by a possible cluster structure of the boron nuclei and quantitatively used to benchmark new ab initio nuclear structure calculations using the no-core shell model and Green's function Monte Carlo approaches. These results are the foundation for a laser spectroscopic determination of the charge radius of the proton-halo candidate 8 B.
Satellite based quantum key distribution (QKD) enables the delivery of keys for quantum secure communications over long distances. Maturity of the technology as well as industrial interest keep increasing. So does the technology readiness of satellite free-space optical communications. A satellite QKD system comprises a quantum communication subsystem and a classical communication subsystem (public channel). Both are implemented with freespace optics. Thus, in satellite QKD system design, there are strong synergies that should be exploited as much as possible and lead to an all-optical satellite QKD system. In this paper, we present a system like this locating all optical channels in ITU DWDM C-band. We focus on the overall conceptual design and the setup of the optical channels for quantum and classical signal transmission. The system description addresses the breadboards of a transmitter laser terminal (Alice terminal), a receiver laser terminal, (Bob terminal), the public channel implementation, the interfaced QKD system and the deployed encryption system. The design basis for the Alice terminal is the laser terminal development OSIRISv3. The design basis for the Bob terminal is the ground station development THRUST. The later contains an adaptive optics correction to enable single mode fiber coupling. This enables the interfacing to almost arbitrary quantum receivers such as the Bob modules used in the described experiment. The public channel is composed of a bi-directional 1 Gbps IM/DD system and a MODEM that implements a proprietary waveform optimized for free-space channels.The system was experimentally analyzed in a field test in the framework of the German initiative QuNET which addresses the use case of quantum secure communication for authorities. The results of the experiment are used to model a feasible LEO satellite-ground link. Performance indicators such as quantum bit error rate and secure key rate of a potential mission are estimated analytically.
We present a guard-ring free InGaAs/InP single photon avalanche diode with 20 µm diameter for the optical C-band. At 225 K, 25.6 µs dead time and 17% detection efficiency, the dark count rate is 3 kcps with 0.5% afterpulsing probability. This corresponds to a quantum bit error rate of about 1.2% for 625 MHz timebin-phase BB84 QKD over 125 km.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.