Wetlands cover at least 6 % of the Earth’s surface. They play a key role in hydrological and biogeochemical cycles, harbour a large part of the world’s biodiversity, and provide multiple services to humankind. However, pressure in the form of land reclamation, intense resource exploitation, changes in hydrology, and pollution threaten wetlands on all continents. Depending on the region, 30–90 % of the world’s wetlands have already been destroyed or strongly modified in many countries with no sign of abatement. Climate change scenarios predict additional stresses on wetlands, mainly because of changes in hydrology, temperature increases, and a rise in sea level. Yet, intact wetlands play a key role as buffers in the hydrological cycle and as sinks for organic carbon, counteracting the effects of the increase in atmospheric CO2. Eight chapters comprising this volume of Aquatic Sciences analyze the current ecological situation and the use of the wetlands in major regions of the world in the context of global climate change. This final chapter provides a synthesis of the findings and recommendations for the sustainable use and protection of these important ecosystems
Reed canarygrass (Phalaris arundinacea L.) is native to Europe and North America, being invasive in the latter since the 20th century. No phenotypic differences have been found in plants from each continent; genetic analyses have been controversial—implicating or exonerating forage/ornamental cultivars for spread throughout North America. Within central Europe, particularly the Czech Republic, it is unknown whether wild genotypes and cultivars are genetically and phenotypically similar. The objectives of this study were to compare commercial forage and ornamental cultivars sold within the Czech Republic with wild genotypes from native populations along major Czech rivers and characterize the extent of phenotypic and genetic variation. Several phenotypic traits differentiated among genotypes and populations (initial tiller fresh weight, stem dry weight [DW], whole plant above‐ and belowground DW, total no. of tillers, percent cover, crown area, height, leaf and node number). Genetic markers (inter‐simple sequence repeats [ISSRs]) clearly differentiated ornamental cultivars from wild P. arundinacea. ‘Chrastava’, the Czech forage and biomass cultivar was genetically similar to wild genotypes, which have most of the genetic diversity within, rather than among, populations. Cluster analyses showed ornamental cultivar ramets to be heterogeneous, most likely due to clonal mix up or mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.