We present a qHD (960 × 540 with three sub‐pixels) top‐emitting active‐matrix organic light‐emitting diode display with a 340‐ppi resolution using a self‐aligned IGZO thin‐film transistor backplane on polyimide foil with a humidity barrier. The back plane process flow is based on a seven‐layer photolithography process with a CD = 4 μm. We implement a 2T1C pixel engine and use a commercial source driver IC made for low‐temperature polycrystalline silicon. By using an IGZO thin‐film transistor and leveraging the extremely low off current, we can switch off the power to the source and gate driver while maintaining the image unchanged for several minutes. We demonstrate that, depending on the image content, low‐refresh operation yields reduction in power consumption of up to 50% compared with normal (continuous) operation. We show that with the further increase in resolution, the power saving through state retention will be even more significant.
-A process to make self-aligned top-gate amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) on polyimide foil is presented. The source/drain (S/D) region's parasitic resistance reduced during the SiN interlayer deposition step. The sheet resistivity of S/D region after exposure to SiN interlayer deposition decreased to 1.5 kΩ/□. TFTs show field-effect mobility of 12.0 cm 2 /(V.s), sub-threshold slope of 0.5 V/decade, and current ratio (I ON/OFF ) of >10
7. The threshold voltage shifts of the TFTs were 0.5 V in positive (+1.0 MV/cm) bias direction and 1.5 V in negative (À1.0 MV/cm) bias direction after extended stressing time of 10 4 s. We achieve a stage-delay of~19.6 ns at V DD = 20 V measured in a 41-stage ring oscillator. A top-emitting quarter-quarter-video-graphics-array active-matrix organic light-emitting diode display with 85 ppi (pixels per inch) resolution has been realized using only five lithographic mask steps. For operation at 6 V supply voltage (V DD ), the brightness of the display exceeds 150 cd/m 2 .
The maturity of metal-oxide thin-film transistors (TFT) highlights opportunities to develop robust and low-cost electronics on flexible and stretchable substrates over large area in an industry-compatible technology. Internet-of-Everything applications with sensor nodes are driving the development of analog-to-digital converters (ADCs). In this paper, a self-biased and self-digital-controlled successive approximation ADC with integrated references and sensor read-in circuitry together with a printed negative temperature coefficient (NTC) sensor using unipolar dual-gate metal-oxide (InGaZnO) TFTs is demonstrated. The system is operated at a clock of up to 400 Hz and a total power dissipation of 245 mW (73 µW from analog) at a maximum power supply of 30 V is measured. The radio-frequency identification-ready ADC comprises of a total of 1394 indium-gallium-zinc oxide TFTs and 31 metal-insulatormetal capacitors. A figure of merit of 26 nJ/c.s. is achieved from the ADC driven from external microcontroller. The robustness of the various blocks of the chip is characterized and the yield is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.