False positive (FP) marks represent an obstacle for effective use of computer-aided detection (CADe) of breast masses in mammography. Typically, the problem can be approached either by developing more discriminative features or by employing different classifier designs. In this paper, the usage of support vector machine (SVM) classification for FP reduction in CADe is investigated, presenting a systematic quantitative evaluation against neural networks, k-nearest neighbor classification, linear discriminant analysis and random forests. A large database of 2516 film mammography examinations and 73 input features was used to train the classifiers and evaluate for their performance on correctly diagnosed exams as well as false negatives. Further, classifier robustness was investigated using varying training data and feature sets as input. The evaluation was based on the mean exam sensitivity in 0.05-1 FPs on normals on the free-response receiver operating characteristic curve (FROC), incorporated into a tenfold cross validation framework. It was found that SVM classification using a Gaussian kernel offered significantly increased detection performance (P = 0.0002) compared to the reference methods. Varying training data and input features, SVMs showed improved exploitation of large feature sets. It is concluded that with the SVM-based CADe a significant reduction of FPs is possible outperforming other state-of-the-art approaches for breast mass CADe.
BackgroundThe pathologist’s visual assessment of tumor proportion score (TPS) with 25% cutoff on PD-L1 stained tissue samples is an established method to select metastatic NSCLC patients that are likely to respond to an anti-PD-L1 monotherapy.1 However, manual scoring is often subject to subjectivity in human perception2 and there remains a critical need for more objective and quantitative methods to assess PD-L1 expression in immuno-oncology.MethodsWe used deep learning (DL) based image analysis (IA) to generate a novel PD-L1 Quantitative Continuous Score (QCS)3 in tumor cells. PD-L1 QCS consists of two DL models to first segment epithelial regions and second detect membranes, cytoplasm and nuclei of each tumor cell in PD-L1 immunohistochemically (IHC) stained tissue slides. The PD-L1 expression of each tumor cell compartment was estimated by the respective optical density (OD) of DAB, and tumor cells with a membrane OD greater than ODmin are considered as PD-L1-positive. A slide comprising at greater percentage of PD-L1-positive tumor cells than a cutoff value (CoV) is considered QCS-positive. The ODmin and CoV parameters were linked to patient overall survival (OS), by minimizing the Kaplan Meier log-rank p-values and keeping at least 50% prevalence in the QCS-positive subgroup.Fully supervised QCS-IA models were extensively trained using pathologists’ annotations and the performance was validated on unseen data to ensure its generalization and robustness.3 4 The QCS IA was locked and blindly applied on clinical trial data (NCT01693562, durvalumab-treated late-stage NSCLC cohort) without further refinement.ResultsData analytics techniques were used to determine optimal PD-L1 QCS parameters for the clinical trial cohort of N=162 late-stage NSCLC patients. A PD-L1 QCS algorithm (ODmin=8, CoV=57%) is able to stratify durvalumab-treated NSCLC patients at a higher prevalence and more significant log rank p-value (64%, p=0.0001) for OS (figure 1) compared to pathologist TPS (59%, p=0.01). Median OS times of (19.2 months vs 7.9 months) was observed in the QCS-positive vs negative subgroups, respectively. The box plots (figure 2) indicate an overall good agreement (72% concordance) of the fully automated QCS with the pathologists TPS, which quantitatively supports the positive visual assessment of the cell segmentation accuracy.Abstract 365 Figure 1Kaplan Meier (KM) curves for OS stratification. KM curves for Overall Survival (OS) stratification with (left) manual PD-L1 TPS score (25% cutoff), and (right) automated QCS (57% cutoff).Abstract 365 Figure 2QCS scores within TPS positive and negative groups. Box plot indicating percent positive cells (OD≥8) as measured by PD-L1 QCS within the PD-L1 high (red) and low (blue) groups as per pathologist assessment by TPS.ConclusionsThe novel Quantitative Continuous Scoring (QCS) provides an objective way of correlating a quantitative estimate of PD-L1 IHC expression on tumor cells with survival of durvalumab-treated NSCLC patients. This data establishes a first proof-of-concept demonstrating the potential utility of PD-L1 QCS towards precision medicine in immuno-oncology.ReferencesRebelatto M, et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagnostic Pathology 2016.Tsao M S, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. Journal of Thoracic Oncology 2018.Gustavson M, et al. Novel approach to HER2 quantification: digital pathology coupled with AI-based image and data analysis delivers objective and quantitative HER2 expression analysis for enrichment of responders to trastuzumab deruxtecan (T-DXd; DS-8201), specifically in HER2-low patients. (2021) DOI: 10.1158/1538-7445.SABCS20-PD6-01Kapil A, et al. Domain adaptation-based deep learning for automated tumor cell (TC) scoring and survival analysis on PD-L1 stained tissue images. IEEE Transactions on Medical Imaging DOI: 10.1109/TMI.2021.3081396Ethics ApprovalClinical study NCT01693562, from which data in this report were obtained, was carried out in accordance with the Declaration of Helsinki and Good Clinical Practice guidelines. The study protocol, amendments, and participant informed consent document were approved by the appropriate institutional review boards.
Organ motion compensation in image-guided therapy is an active area of research. However, there has been little research on motion tracking and compensation in magnetic resonance imaging (MRI)-guided therapy. In this paper, we present a method to track a moving organ in MRI and control an active mechanical device for motion compensation. The method proposed is based on MRI navigator echo tracking enhanced by Kalman filtering for noise robustness. We also developed an extrapolation scheme to resolve any discrepancies between tracking and device control sampling rates. The algorithm was tested in a simulation study using a phantom and an active mechanical tool holder. We found that the method is feasible to use in a clinical MRI scanner with sufficient accuracy (0.36 mm to 1.51 mm depending on the range of phantom motion) and is robust to noise. The method proposed may be useful in MRI-guided targeted therapy, such as focused ultrasound therapy for a moving organ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.